CONTENTS

Acknowledgments 6

Project Team 7

Executive Summary 9

PART 1 - HISTORIC CONTEXT

1.1 Introduction 15

1.2 Historic Background 17

1.2.1 Pre-Historic Background 17

1.2.2 Pre-Institution History 17

1.2.3 Georgia School of Technology (1885–1922) 20

1.2.4 Georgia School of Technology (1922–1944) 27

1.2.5 Georgia Institute of Technology (1945–1956) 30

1.2.6 Georgia Institute of Technology (1957–1968) 33

1.2.7 Georgia Institute of Technology (1969–1994) 38

1.2.8 Georgia Institute of Technology (1994–Present) 44

1.3 Chronology of Development and Use 47

1.3.1 Periods of Development at Georgia Tech 47
PART 3 - TREATMENT AND USE OF HISTORIC RESOURCES

3.1 Introduction 132

3.2 Applicable Legislation & Planning Documents 132
 3.2.1 The Seven Standards of the State Stewardship Program 133
 3.2.2 Major Planning Documents 134
 3.2.3 Treatment 134
 3.2.4 The State of Georgia Standards for the Treatment of Historic Properties 135

3.3 Anticipated Treatment 137

3.4 Rehabilitation Treatment Guidelines 144
 3.4.1 Retaining Original Materials and Design Elements 144
 3.4.2 Repair and Replacement of Windows and Doors 144
 3.4.3 Historic Masonry Repair and Restoration 147
 3.4.4 Accessibility and Historic Resources 149
 3.4.5 Additions to Historic Buildings 151
 3.4.6 Rehabilitating Historic Interiors 153

3.5 Treatment to Features within Historic Districts 154

3.6 Historic Landscape Treatment Guidelines 155
 3.6.1 Treatment 155
 3.6.2 Open Space and Greenspace 155
 3.6.3 Vegetation 155
 3.6.4 Circulation 157

3.7 Archaeology Treatment Guidelines 159
PART 4 - LOOKING AHEAD

4.1 Future-Eligible Landscapes and Architecture 163
 4.1.1 Landscapes 163
 4.1.2 Architecture 166

4.2 Administration of the state stewardship program 167
 4.2.1 Preservation Officer 167
 4.2.2 Updating the Campus Historic Preservation Plan 167

APPENDICES

Appendix A - Catalog of Resources

Appendix B - Georgia Tech Historic District National Register Nomination

Appendix C - Archaeology Report
ACKNOWLEDGMENTS

The Campus Historic Preservation Plan Update project team would like to acknowledge and thank Laurence Brennan, Georgia Tech’s project manager on this project, and the participants of the bi-weekly working group meetings, all of whom helped tremendously to locate, organize, and refine the many different parts of this Campus Historic Preservation Plan. Working Group members are Linda Daniels, Tameka Wimberly-Jones, Amanda Jones, Nicolas Palfrey, Jason Gregory, Svetlana Soroka, Adrian McCord, Juan Archila, Jody Thompson, and Chris Rettkowski.

Additionally, we would like to thank the members of the Advisory Committee, who provided their guidance at several benchmark meetings. Members are Maria Cimilluca, Jim Stephens, Gilbert Delgado, Daniel Nemec, Leslie Sharp, Danielle Willkens, Kelly Ritter, Todd Michney, and Carla Gerona.

A special thank you to Jamie Ready, Jim Stephens, Greg Spiro, Doug Sims, Don Alexander, Michael Miller, Jennifer Chirico, and Marilyn Somers for their additional time and contributions.

Finally, we would like to acknowledge the work of President Ángel Cabrera and the Georgia Tech Historical Narratives Committee, which guided this update’s study of Georgia Tech’s more recent past.

Image credits: Cover: Bird’s Eye View of Georgia Institute of Technology, Atlanta, Georgia, 1911. Richard Rummell. Table of Contents: View of Tech Tower and the Carnegie building. 2023 images by authors.
PROJECT TEAM

Lord Aeck Sargent
Karen Gravel, AIA, Principal and Preservation Architect
Charles Lawrence, Project Manager & Preservation Planner
Supriya Kelkar, Preservation Planner

New South Associates
Jackie Tyson, Project Manager
Patrick Sullivan, Author of Campus History and Development
Matthew Tankersley, Archaeologist

WLA Studios
J. Keyes Williamson, Project Manager & Cultural Landscape Architect
Olivia Head, Cultural Landscape Architect

MOSA Architects
Monica Fenderson, AIA, Architectural Surveyor and Reviewer
Aditi Buche, Architectural Surveyor and Reviewer
The 2023 update to the Georgia Institute of Technology Campus Historic Preservation Plan builds from the work begun with the Georgia Tech Historic Preservation Plan of 2001 and 2009 Campus Historic Preservation Plan Update. As required by the State Stewardship Program, plans are updated periodically to incorporate new landscapes and buildings as they mature within a campus. The 2023 Georgia Tech Campus Historic Preservation Plan update includes the reevaluation and expansion of documented campus history, assessment of buildings constructed between 1969-1984, recommendations regarding the expansion of the existing district and character areas, and an added focus on future significant buildings and sites within the campus. This plan is an excellent resource for those wanting to understand the history and context of the Georgia Institute of Technology and identify the significance of campus resources.

Campus History

While the history of the campus was well documented through the previous plans, efforts were made to research and expand the narrative. Key areas of exploration and research for the update include, but are not limited to:

- School experiences of African American students and faculty in the years and decades after integration in 1961.
- Significant leadership by women, LGBTQ+, Black, Indian, Latin, Asian and other underrepresented communities on campus.
- The continued globalization of Georgia Tech.
- Foundational efforts toward the Olympics.
- Advancements in the infrastructure of the campus.
- Georgia Tech’s role in the National Space Program.
- Campus expansion

Assessment of 1969-1984

Twenty-six buildings that were added to the campus between 1969 and 1984 required an initial survey as a part of this process. Sixty-eight previously surveyed buildings were reevaluated to understand alterations and renovations and their impacts on the eligibility of the resources. Twelve landscapes were identified in 2009 and four were added in 2023 for evaluation.

To place value on the resources within this context, the design team and working group discussed, debated, and agreed upon a four-tiered Institutional Value structure based on previous plans and the Board of Regents Campus Historic Preservation Plan Guidelines.
Forty-two buildings and nine landscapes are valued for Long Term Preservation. Thirty-two buildings are valued for Consideration for Long-Term Preservation and nine buildings are designated Valued but not Eligible, meaning that they are not eligible for placement on the National Register currently. Eight buildings were found to have No Significant Institutional Value.

Historic Districts and Character Areas

Georgia Tech’s existing National Register District was established in 1975 and is focused on the oldest part of the campus. It is recommended that Georgia Tech consider expanding the current National Register District to encompass areas not previously included but which are now eligible. In addition, there is a considerable collection of International Style buildings, designed by Georgia Tech modernist architects, that together form their own district or character area. We recommend Georgia Tech consider collectively acknowledging these important structures.

Treatment to Historic Resources

Under Board of Regents guidelines, Georgia Tech has a responsibility to provide special consideration for the treatment of eligible historic resources. Guidelines for the treatment of buildings and landscapes are included in this update and provide a resource to campus planners, designers, and managers. As a modern and evolving institution, a balance must be struck to allow for growth and adaptation while honoring and improving the quality of the historic environment.

Georgia Tech Design Philosophy

The Georgia Institute of Technology has a rich architectural tradition of designing buildings of their time. Campus buildings predominantly reflect the respective technologies, systems, and styles of the era in which they were built. Each era of construction contributes in new and distinct ways - each period incorporating and reinterpreting similar materials like brick, stone and glass. This design approach is embraced by the Institute and reinforced by the Secretary of Interior Standards for Preservation. The first step in designing within a historic context is understanding the history and existing resource(s). This document stands as that design foundation for the Institute.

Design that reflects the values and technology available to each respective generation is one of the tenants of preservation design - and thoughtful design in general. This attitude has inherently pervaded building campaigns at Georgia Tech for over 141 years and should continue as a guiding principle.
Additions to historic buildings or environments should reflect their own time, be deferential to the character and importance of the original structures, and clearly distinguishable from the old. These basic concepts have knowingly or unknowingly been a foundation for the growth of the Institute over its history.

Looking Ahead

Understanding the contributions made to the campus between 1969 and 1984 enables us to see the campus as it was prior to recent significant, deliberate exercises that transformed the campus over the past 30 years. In a new section called, “Looking Ahead”, the Campus Historic Preservation plan identifies areas and buildings that will likely become the next historically significant structures. These include but are not limited to the significant landscape improvements and the signature buildings of the Olympic era and the eco-sustainability movement.
1.1 INTRODUCTION

The Historic Context Section of the Campus Historic Preservation Plan (CHPP) provides an overview of the history of the Georgia Institute of Technology. This information serves as a framework for identifying, evaluating, and making recommendations for the treatment of the Institute’s historic resources. The Historic Context is organized into two sections—the Historical Background, which explores the important people, events and broad themes that have contributed to shaping the institution over time, and the Chronology of Development and Use, which focuses on the evolution of the Institute’s built environment.

Portions of the Historical Background narrative below have been taken directly from the 2009 Georgia Tech Campus Historic Preservation Plan and the Georgia Institute of Technology: Architectural Survey (1943–1965). Lord Aeck Sargent (LAS) with the Jaeger Company, now WLA Studio, and New South Associates (NSA), created both reports.

The current effort has expanded and supplemented these previous works to meet the Board of Regents of the University System of Georgia, Campus Historic Preservation Plan Guidelines and to address historical narratives about the Institute and its community that were either briefly addressed or not previously examined in the 2009 CHPP, its predecessors, or other contextual studies of Georgia Tech. The Georgia Tech Historical Narratives Committee identified several of these key underrepresented topics in its March 2021 report presented to President Angel Cabrera.

The CHPP Advisory Committee and the project team refined these narratives over the course of the project. The topics that have been explored included, but were not limited to, the following:

- School experiences of African American students and faculty in the years and decades after the integration of Georgia Tech in 1961.
- Significant leadership and achievements by women, LGBTQ+, Black, Indian, Latin, Asian, and other people of color or underrepresented/under-served communities at Georgia Tech.
- The globalization of Georgia Tech and growing diversification of the student body.
- Documentation of the Centennial Olympic Games at Georgia Tech (including Georgia Tech Olympic student athletes and the Institute’s role serving as the Olympic Village).
- Research innovation and infrastructure advancements at Georgia Tech.
- Georgia Tech’s role in the National Space Program.
Campus expansion in the late twentieth century and the development of Technology Square.

The Historic Background and Chronology of Development and Use sections provide a contextual lens through which we observe and evaluate Georgia Tech’s historic resources.
1.2 HISTORIC BACKGROUND

1.2.1 Pre-Historic Background

The pre-historic archaeological context of the area that became the Georgia Institute of Technology campus was developed by New South Associates (NSA) and is provided in Appendix C.

1.2.2 Pre-Institution History

The founding of Atlanta dates to the late 1830s following the forcible removal of remaining Native Americans (principally the Muscogee and Cherokee) from the northwest portion of Georgia and the extension of railroad lines into the state’s interior. Originally part of DeKalb County, Atlanta’s beginning can be traced to an 1836 Act of the Georgia General Assembly that provided for the construction of the Western and Atlantic Railroad from Ross’ Landing on the Tennessee River (near present-day Chattanooga, Tennessee) to “some point on the southeastern bank of the Chattahoochee River.” By the fall of 1837, workers had established the Zero Mile Post marking the southern terminus of the railroad. A small community of railroad laborers soon developed around the stop, which was located just east of the Chattahoochee River. Initially referred to as “Thrasherville,” after the pioneer settler and businessman, John J. Thrasher, the site was later descriptively named “Terminus” by the railroad company.¹

In 1842, the southern terminus of the Western and Atlantic Railroad was extended and connected to the newly constructed Central of Georgia Railroad, which provided access to the cotton markets in Augusta to the east. On December 23, 1843, the state legislature incorporated Terminus and residents voted to rename the pioneer settlement, “Marthasville,” in honor of Martha Lumpkin, the daughter of former Georgia Governor Wilson Lumpkin. Two years later, on December 26, 1845, the General Assembly elected to rename the town again as “Atlanta.” By 1850, Atlanta had a population of 2,058 residents. Of that number, 493 were enslaved and 18 were free African Americans.¹

On December 20, 1853, the Georgia General Assembly created Fulton County from the western half of DeKalb County. The state’s 105th county was named in honor of inventor Robert Fulton, who demonstrated the practical use of steam power for water transportation by sailing the steamboat Clermont from New York City to Albany, New York in 1807. Atlanta was designated as the county seat at the time Fulton County was created.²

² Pat Bryant, Georgia Counties: Their Changing Boundaries, Second Edition revised by Ingrid Shields (Atlanta, Georgia: Georgia Department of Archives and History, 1983), 58–59.
The Civil War

Prior to the Civil War in 1860, the population of Atlanta stood at 9,554 people, making it the fourth largest city in Georgia. At the time, the city limits occupied what is now considered downtown and were largely confined to the Five Points area. Three rail lines serviced Atlanta—the Georgia Railroad from the east, the Atlanta and West Point Railroad from the southwest, and the Western and Atlantic Railroad from the northwest. During the Civil War, the city emerged as a major munitions manufacturer and a vital regional distribution, medical, and transportation center for the Confederate Army. As a result of its economic and military importance, Atlanta’s wartime population more than doubled from the 9,554 people in 1860 to 22,000 by 1864.3

In July of 1864, the southward advance through North Georgia by the U.S. Army of the Tennessee, under the command of General William T. Sherman, had forced Confederate forces to retreat behind the defense works surrounding Atlanta. The first defensive line was located south of what is now the Georgia Tech campus. There were also three redoubts or forts located north of that line. These were later incorporated into a second defensive line that cut across what is now the southern part of the campus. Despite these lines of defense, the U.S. Army forced the Confederates to evacuate the city by August 31, 1864, following the destruction of their last railroad supply line after the Battle of Jonesboro. Mayor James Calhoun eventually surrendered Atlanta to Federal authorities on September 2, 1864. Many of the city’s remaining railroad and industrial infrastructure, public buildings and commercial enterprises were destroyed over a two-month span by Sherman’s occupying troops before embarking on the “March to the Sea,” in November of that year.4

Late Nineteenth Century Development

Adopting the phoenix as the new symbol of Atlanta, residents quickly set about rebuilding the damaged city after the war. By the close of 1865, all pre-war rail infrastructure had been rebuilt and as a sign of confidence in the city’s growing stature and economic promise, Georgia’s political and business leaders elected to relocate the State’s capital from Milledgeville to Atlanta in 1868. In 1870, the city’s population stood at 21,789. That number would jump to 37,409 people by the following decade as Atlanta’s position as railroad transportation hub propelled it to become a major regional distribution and mercantile center in the Southeast over the course of the late nineteenth century (U.S. Census 1870, 1880).

Following the Civil War, the primary goal of Atlanta’s business and civic leaders was to create a new economic vision for the city and region based on industrialization and the attraction of northern investment capital. Its most ardent promoter, Henry W. Grady, the part-owner and managing editor of the Atlanta Constitution, coined the model the “New South” movement in his 1886 address to the New England Society in New York. In that speech and many others, Grady stressed Atlanta and the South’s best hope for growth and prosperity after the war was through the development of a more diversified economy based on industry, rather than staple crop agriculture, and political reconciliation with the North all while maintaining strict racial segregation and white supremacy in the region. An important component of the New South philosophy also included the need for better practical education in the South, particularly in the fields of industrial technology and engineering. Starting in the early 1880s, Grady and other New South proponents began lobbying for the establishment of a public state school in Atlanta devoted to vocational and industrial education.

Nathaniel Edwin Harris, an attorney and state legislator from Macon, introduced a resolution in the Georgia General Assembly in 1882 to create a committee to investigate the feasibility of a technical school. While in the General Assembly, Harris oversaw a committee studying two competing approaches to teaching technical training at major engineering schools in Massachusetts, New Jersey, and New York. The first approach, known as the “shop culture,” was used at the private Worcester County Free Institute of Industrial Science (now Worcester Polytechnic Institute, or WPI) and was characterized by hands-on training in an apprentice-type working and learning environment. The “school culture,” also known as the scientific approach, was employed at schools such as the Stevens Institute of Technology in New Jersey and the Massachusetts Institute of Technology (MIT; informally known as “Boston Tech”). This method was less hands-on and a more theoretical form of teaching that was fashioned after European research university models. Impressed by what they saw in Worcester, the committee elected to go with the more traditional “shop culture” system, which was instituted at Georgia Tech upon its opening and divided student educational time between the shop and classroom.

7 John Dunn et al., eds., Ramblin’ Wrecks from Georgia Tech: A Centennial History of the Georgia Tech Alumni Association (Atlanta, Georgia: Georgia Tech Alumni Association, 2008), 12.
8 McMath et al., Engineering the New South: Georgia Tech, 1885–1985, 8–11, 17–19.
1.2.3 Georgia School of Technology (1885–1922)

The creation of the Georgia School of Technology occurred on October 13, 1885, with Georgia Governor Henry D. McDaniel’s signature of legislation for the funding and construction of a state technological school. Atlanta offered the highest bid of $120,000 in money and land of the five competing cities vying to serve as the home of the new educational facility, which also included Athens, Macon, Milledgeville, and Penfield, in Greene County. Along with an appropriation of $65,000, the state also purchased five acres of land on the northern periphery of the Atlanta city limits at a cost of $10,000 from the Peters Park Development Company in 1887. The proposed site of the technological school’s campus fronted the north side of North Avenue, between Peachtree and Marietta streets. Real estate and streetcar magnate, Richard Peters, later donated an additional four-acre tract from his unrealized Peters Park subdivision property for the development of the school, which brought the total size of the original campus to nine acres.9

Isaac Hopkins (1888–1896)

Isaac Stiles Hopkins guided Georgia Tech’s early years during his time as the school’s first president from May 3, 1888, to 1896. Dr. Hopkins was both an administrator and a scholar. He received his education in theology, medicine, the natural sciences, Latin, English literature, “mental and moral sciences,” biblical literature, and industrial instruction. Prior to coming to Georgia Tech, Hopkins served as the president of Emory University’s undergraduate campus at Oxford, Georgia, where he espoused a vision of practical training combined with a traditional classical education.

Early Campus Life

The sounding of an engine steam whistle at noon signaled the formal opening of the Georgia School of Technology on October 5, 1888.10 In the fall of 1892, a new steam whistle was installed in the reconstructed Shop Building. It originally blew five minutes before every hour, Monday through Friday between 8 a.m. and 6 p.m., to signal the change in classes and making it the earliest recorded tradition on campus.

Georgia Tech students first stole ‘The Whistle’ in 1905 and continued to do so over the following years, much to the consternation of school administrators. Subsequent versions of the steam whistle were installed on various buildings around the campus which were also blown to

9 McMath et al., 29–35.
10 McMath et al., 48–49.
celebrate victories of the Georgia Tech football team. In 2003, the Georgia Tech Research Institute (GTRI) installed a rebuilt, computerized version of “The Whistle” atop the A.C. Holland Power Plant.

The first class contained 84 students and the staff consisted of 10 faculty members. Along with Dr. Hopkins as president, Lyman Hall served as the first professor of mathematics; W.H. Emerson as professor of chemistry; Milton P. Higgins as superintendent of the machine shop; Charles Lane as professor of English language and literature; and R.S. Shepherd as professor of freehand and mechanical drawing. In addition to the classroom instructors, William H.E. Duncan served as foreman of the machine shop; G.E. Cassidy as foreman of the wood shop; Horace Thompson as foreman of the blacksmith shop; and A.S. Buzzell as foreman of the foundry.

Qualifications for admission to Georgia Tech’s first apprentice class included a minimum age of 16 and passing an entrance exam that included arithmetic, algebra, American history, geography, and English. The original curriculum included six academic subjects including mathematics, physics, chemistry, mechanics, drawing, and English, along with a requisite shop course. Tuition was free for most Georgia students and out-of-state tuition was set at $150 per year. As there were no on-campus residence halls, students who did not reside with their own families paid between $12.50 and $20 per month to live in nearby, off-campus housing. All students were expected to attend daily chapel service at Georgia Tech’s chapel in addition to weekly services at a place of worship based on their religious affiliation. The Beta Iota chapter of Alpha Tau Omega received its charter the year the school opened in 1888, making it the first fraternity on campus.

Ironically, when it first opened, the school lacked a professor of mechanical engineering—the one field for which the school initially offered a degree. Soon thereafter, John Saylor Coon was appointed professor of mechanical engineering in May 1889. Coon’s career in mechanical engineering bridged both the “shop culture” and “school culture” approaches to engineering. Within a decade of its opening, Georgia Tech had abandoned the commercial shop system and would expand its academic curriculum under Coon’s 35-year career.

16 Dunn et al., 27.
Origins of Georgia Tech Football

Georgia Tech fielded its first football team in the fall of 1892 under the leadership of faculty members, organizers, and player-coaches, F.O. Spain and Ernest E. West. Georgia Tech struggled during its inaugural season, amassing a disappointing 0-3 record against teams representing Mercer, Vanderbilt, and Auburn University (then known as the Agricultural and Mechanical College of Alabama). The team fared much better in its second season behind the coaching and play of West and Leonard Wood, a lieutenant and surgeon in the Army who had enrolled at Georgia Tech while he was stationed at nearby Fort McPherson. Wood scored three touchdowns in Tech’s first football victory over the University of Georgia, which took place in Athens, Georgia on November 4, 1893. The bitterly contested game would end in a hail of bricks and mud thrown by the home fans enraged by their team’s 28-6 drubbing.17

Lyman Hall (1896–1905)

Lyman Hall succeeded Hopkins to become the school’s second president in 1896. A native of Americus, Georgia, Hall attended Mercer University before his acceptance to the U.S. Military Academy at West Point. Following his graduation from West Point in 1881, he taught at the Georgia Military Academy at Kirkwood, Georgia, the South Carolina Military Academy (commonly known as The Citadel), and the Moreland Park Military Academy. Hall was hired in 1888 as the first chair of the Georgia Tech mathematics department prior to his appointment by the Board of Trustees to serve as president.18

As president, Hall proved to be an energetic fundraiser and strict disciplinarian, a leadership style in keeping with his military background. Hallmarks of his administration included the construction of on-campus dormitories, a greater emphasis on disciplinary rules, the establishment of new degree programs, and more aggressive recruitment of students. He also made efforts to increase funding from the state legislature and private benefactors located throughout the country.

During Hall’s nine-year presidency, he upgraded the school’s laboratories and secured funds for the first permanent student dormitory. Designed by Bruce and Morgan and completed in 1897, Knowles Dormitory was named after Clarence Knowles, a Fulton County representative in the Georgia General Assembly who championed increased state appropriations for Georgia Tech to build the facility. In addition, President

Hall sought, and received, private funding from Pittsburgh industrialists Aaron French and Andrew Carnegie to build textile and library buildings, which in turn were named for their benefactors. Georgia Tech established new degree programs in electrical engineering and civil engineering in 1896. The following year, the trustees separated the physics program from the Electrical Engineering Department. The “A. French Textile School” was formed in 1898 through large donations of funds and equipment from regional and national textile machinery manufacturers and the school created the Department of Engineering Chemistry in 1901.19

Late in Hall’s tenure, Georgia Tech hired John Heisman in 1904 as the first full-time head football coach. Coach Heisman oversaw a 102-27-7 record and led Georgia Tech to four national championships over the course of his 16-year career at the Institute. He was also a pioneer in changing the way the game was played. Heisman’s innovations include the center snap and jump shift as well as his efforts to legalize the forward pass.

During Heisman’s time at the Institute, development began on Grant Field with the use of convict-lease labor to level the site and the first football game was played on the grounds in the fall of 1905. A $15,000 donation provided by John W. Grant funded the construction of the West Stands in 1913 and the school’s board named the facility in honor of Grant’s deceased son, Hugh Inman Grant, that same year. The award for the best college football player in the country, the Heisman Trophy, which was named after Georgia Tech’s legendary coach, was first awarded by the Downtown Athletic Club in New York in 1935.20

Kenneth G. Matheson (1906–1922)

President Hall’s energy and health began to fail in 1905 and he eventually died at a health resort in Dansville, New York in August of that year. Following his death, the new Chemistry Building was named the Lyman Hall Laboratory of Chemistry in his honor. The Board of Trustees appointed Kenneth Gordon Matheson to serve as Georgia Tech’s third president in 1906. Matheson had been a faculty member in the English department prior to becoming president.

Early in his administration, Matheson raised academic entrance requirements and dropped the apprentice-level classes. Over the course of his presidency, he pushed to enlarge the campus and improve its infrastructure, established the school library, and expanded educational and social activities for students. Georgia Tech introduced the Institute’s

19 McMath et al., 72–77, 80–93.
yearbook, the Blueprint, in 1908 and the school established its first honorary student group, the ANAK Society, that same year. Three years later brought the first publication of the student newspaper, the Technique, in 1911.21

The year 1911 ushered in the start of one of Georgia Tech’s oldest traditions with the inaugural student cross country foot race. The race was coined the “Freshman Cake Race” two years later in 1913 from the practice of awarding race winners with cakes baked by the wives of faculty and administrators, as well as the mothers and sweethearts of the participants. Early Cake Races were run by all undergraduate class members over two to four-mile courses. In 1935, students incorporated the Race into the homecoming celebrations and made it a compulsory event for freshmen. Obligatory participation of freshmen ended in the 1970s after it had fallen out of favor among Georgia Tech’s student body.22

Under Matheson’s governance, Georgia Tech began offering a five-year cooperative program in 1912. The optional “co-op” program allowed students to combine career-related experience with traditional classroom instruction. As the fourth oldest cooperative education program in the world, it has grown to become the largest program of its kind for science and engineering in the country.23

In 1912, Georgia Tech also established the School of Commerce, the forerunner of the Georgia State University J. Mack Robison College of Business, as a series of monthly lectures given by various Atlanta businessmen and lawyers. By 1913, the business lectures had evolved into a two-year program that offered day and evening classes for students. The popularity of the School of Commerce resulted in the program becoming an independent unit within the University System of Georgia and the evening school classes eventually moving into the Walton Building in downtown Atlanta by 1917. Women students were admitted into the evening classes that same year. In 1919, Anna Teitelbaum Wise became the first woman to graduate from the program and its first female faculty member—one year before the Georgia General Assembly passed legislation that formally allowed women to attend the evening school and 41 years before women would be allowed to enroll as full-time students at Georgia Tech.24

Student clubs and social organizations proliferated at Georgia Tech in the 1910s. The Young Men’s Christian Association (YMCA) Building, which was formally dedicated in 1912 and contained a bowling alley, restaurant, and barbershop (among other spaces), emerged as the epicenter of the “moral and social” life on campus. In 1915, the wearing of the gold-colored RAT cap originated in the ANAK Society, whose purpose is to “honor outstanding juniors and seniors who have shown both exemplary leadership and a true love for Georgia Tech.” Originally, each class had its own color hats, with graduating seniors bequeathing their hats to that year’s incoming freshmen. The introduction of the first military program on campus transformed the class hats into RAT caps, which initially stood for “Recruit at Tech.” Wearing of the RAT caps was expanded to include all freshmen and continues to represent membership in the freshman class each year.

World War I

To raise private funds for the growing school, President Matheson planned to launch the Greater Georgia Tech Campaign to solicit $500,000. Initiated on August 14, 1917, the campaign stalled as America entered World War I and the school’s curriculum and campus were given over to providing instruction to military detachments. The Army Air Corps selected Georgia Tech as the Ground Flight Training School to provide technical training in the areas of radio communications, wireless telegraphy, and automotive and engine operations and repair. The Institute would also become a training school for army supply officers. In addition, many enrolled students and over 35 percent of the Georgia Tech alumni joined active military service during the war.

An expensive long sought-after goal of President Matheson before and after the war was the construction of a new power plant. Plans to build a modern plant to provide heating and lighting for all new and proposed buildings on the expanding campus first emerged in 1912 after several major industrial firms donated more than $100,000 worth of equipment to build the facility. The receipt of this equipment led President Matheson to speculate the Institute might receive other manufacturing equipment to facilitate the creation of a research laboratory for faculty and students that would effectively position Georgia Tech as the state’s industrial engineering extension station. However, a lack of adequate state funding and the outbreak of World War I postponed development of the physical plant and the fulfillment of the research station concept. The Georgia General Assembly eventually followed through on Matheson’s idea and

28 Warren E. Drury III, “The Architectural Development of Georgia Tech” (Atlanta, Georgia, Georgia Institute of Technology, 1984), 107, Georgia Tech Archives Digital Portal to “GT Digital Repository”.

established the Engineering Experiment Station at Georgia Tech in 1919. Today, these research and industrial extension programs are collectively part of the Georgia Tech Research Institute.29

In the fall of 1917, one year prior to the Armistice and the end of World War I, an influx of students entered Georgia Tech. Among those to enroll at that time were several foreign students, including two Chinese scholars and a few individuals from Brazil, Colombia, Cuba, and Mexico. A writer with the Technique noted the presence of these new students, stating they were “doubly welcome because they are from foreign countries and indicate the growing favor of our school.”30 In 1918, eight Cuban, Mexican and Brazilian students established the Latin-American Club (later reorganized as the Pan American Club in 1956), the first social group for foreign students at Georgia Tech and an early predecessor of the current Latin American Student Organization.31 In total, the student enrollment more than doubled at the Institute over a three-year span, from 1,129 in 1916–1917 to 2,400 by the start of the 1919-1920 academic year.32

The swift increase in the student population after World War I would lead to serious financial problems and calls for the renewal of the Greater Georgia Tech Campaign to address funding shortfalls. Working under the slogan, “A Greater Georgia Tech Means a Greater Georgia,” the revived fundraising campaign began with a train trip to various northern cities in the Midwest and Northeast on November 17-20, 1920, called the “Greater Georgia Tech Industrial Tour.” Led by Georgia Governor Hugh M. Dorsey and Georgia Tech President Matheson, approximately 125 alumni, businessmen, and civic leaders agreed to serve on the board. Plans for funds raised through the campaign included the construction of eight buildings, including a new Physics Building, as well as improvements to existing buildings.33

President Matheson resigned his position in 1921 to become president of the Drexel Institute in Philadelphia, Pennsylvania. During Matheson’s 15-year presidency at Georgia Tech, the physical campus grew by 13.5 acres. Four buildings were also constructed during this period, including Mechanical Engineering (John Saylor Coon Building, 045), Lyman Hall Chemical Laboratory (029A), Carnegie Library (036), and the YMCA Building (003), while Grant Field athletic facility was improved with permanent stands.

29 McMath et al., Engineering the New South: Georgia Tech, 1885-1985, 112–13.
30 Technique, “Registration Larger at Tech This Year In Spite of War Conditions,” Technique, October 2, 1917, 1, Georgia Tech Digital Repository.
31 Georgia Institute of Technology, Blue Print (Atlanta, Georgia: Georgia Institute of Technology, 1918), http://hdl.handle.net/1853/14412
32 Dunn et al., Ramblin’ Wrecks from Georgia Tech: A Centennial History of the Georgia Tech Alumni Association
33 Dunn et al., 41–42.
1.2.4 Georgia School of Technology (1922–1944)

Marion L. Brittain (1922–1944)

The Board of Trustees named Marion L. Brittain as the fourth president of the Georgia School of Technology on August 1, 1922. A native of Wilkes County, Georgia, Brittain earned his undergraduate degree from Emory College at Oxford and completed his graduate work at the University of Chicago. He served as the principal of Fulton County schools from 1900 to 1910 and later as the State Superintendent of Education between 1910 and 1922, where he developed a reputation as a strong champion for the state’s educational system.

Brittain, like his predecessor, found his early administration at Georgia Tech hampered by a lack of adequate state funding. Working with Georgia businesses however, particularly the Central of Georgia Railroad, the Atlanta Chamber of Commerce, and the Fulton County Commission, he was able to establish a new ceramics engineering department at Georgia Tech during the 1922-23 academic year that was later funded by the Georgia General Assembly in 1924. Another key achievement in President Brittain’s young tenure occurred in 1926 when the School of Architecture became the first southern architecture school to be admitted into the Association of Collegiate Schools of Architecture. Brittain also sought to secure accreditation by the Southern Association of Colleges and Secondary Schools (SACSCOC)—a goal Georgia Tech ultimately achieved in 1930.

The Great Depression

The economic collapse of the Great Depression affected Georgia Tech just as it had other colleges across the country. In 1930, a group of Georgia Tech alumni donated $2,000 in supplementary funds to help support research efforts at the school. Known as the Alumni Research Fund, it distributed the funding to campus departments to help secure research projects. It also created a first-of-its-kind self-sustaining research mechanism that used proceeds from the contract work used to repay the fund.

In March of that same year Georgia Tech received a Guggenheim award of $300,000. The Guggenheim award was the largest single donation given to the school up to that point. Funding from the gift was used to establish the School of Aeronautics (later renamed the School of Aeronautical Engineering).

34 McMath et al., Engineering the New South: Georgia Tech, 1885-1985, 163–64.
35 McMath et al., 166–67, 189.
Aerospace Engineering) under the leadership of Montgomery Knight, a pioneer in early rotorcraft and helicopter research.37

Despite the difficult economic times of the Great Depression, students maintained rich social lives on the Georgia Tech campus. Among the most enduring popular traditions to emerge during that period was the Ramblin’ Wreck Parade. The parade evolved from the Old Ford ‘Flying Flivver’ road races run between Atlanta and Athens, Georgia in May of 1929 and 1930. The administration, led by the auto enthusiast and Flivver participant Dean Floyd Field, established the Ramblin’ Wreck Parade as less hazardous alternative for students than an illegal road race. The first parade was held in 1932 and led by Dean Field in his beloved 1914 Ford Model T, the first unofficial “Ramblin’ Reck.” Now sponsored by the Ramblin’ Reck Club, the parade is usually conducted on the Saturday morning of Homecoming weekend. Today, the route begins at McCamish Pavilion, proceeds down Fowler Street to Fifth Street, and continues up the hill to Techwood Drive.38

At the height of the Great Depression in September 1934, U.S. Secretary of the Interior Harold Ickes came to Atlanta to attend the groundbreaking ceremonies for the development of Techwood Homes, the first federally subsidized public housing project to be built in the United States. President Franklin Delano Roosevelt would return just over a year later to formally dedicate the complex on November 29, 1935, just prior to his address before thousands assembled at Georgia Tech’s Grant Field.39 Georgia Tech President Brittain served on the Techwood Board of Trustees.

Georgia Tech alumni Flippen D. Burge and Preston G. Stevens (Burge and Stevens, Architects) designed the complex with landscaping designed by Edith Henderson and Grace Campbell. The construction contract was awarded to the J.A. Jones Construction Company of Charlotte, North Carolina and the project was built at a cost of $2.1 million.

The public housing development was located on a cleared, 24.8-acre area on the south side of North Avenue that was alternately known as Tanyard Bottom or Techwood Flats and had been occupied by Black and White working poor residents since the 1880s. When it was completed in August 1936, Techwood Homes contained 604 apartment units for white

39 Ed H. Bradley, “Thousands Pay Tribute to the President,” Atlanta Constitution, November 29, 1935, 1,17, Newspapers.com.
families. The 675-unit University Homes companion project for Black families opened in southwest Atlanta in 1937.

Techwood Homes included Techwood Dormitory, also known as the McDaniel Dormitory for Tech students that was then leased back to the school. The dormitory and much of the Techwood Homes complex were later razed between 1993 and 1996 as part of the extensive preparations for the Centennial Olympic Games in Atlanta.40

World War II

Following America’s entrance into World War II, Georgia Tech adopted an accelerated graduation program at its general faculty meeting on January 22, 1942. While the new schedule shortened the course of the school year to three, seventeen-week terms, with a one-week Christmas vacation, many students elected to leave school immediately and join the thousands of alumni enlisting in the armed forces. Many other students joined the Georgia Tech Army and Navy Reserve’s Officer Training Corps (ROTC) and expected to enter the service after graduation.

As World War II wound down, first with the German surrender on May 7, 1945, and then after the Japanese surrender on August 15, 1945, its impact on Georgia Tech began to be immediately felt. The need for educated and experienced engineers during the war effort highlighted the need for more science- and mathematics-oriented engineering as well as post-graduate training. In the post-war years, Georgia Tech strengthened existing areas of study and set about creating new degree programs in science and mathematics.41

Blake Ragsdale Van Leer (1944–1956)

President Brittain retired in 1944 following a long and successful 22-year career at Georgia Tech and Colonel Blake Ragsdale Van Leer became the school’s fifth president on July 1, 1944. Born in Mangum, Texas (now part of Oklahoma) in 1893, Colonel Van Leer received his degree in electrical engineering from Purdue University and a M.S. in mechanical engineering from the University of California at Berkeley. Van Leer was a dean of engineering at the University of Florida and North Carolina State University prior to World War II. In 1942, he was recalled to active military

duty, where he served as chief of the Facilities Branch of the Army Specialized Training Division before becoming the first trained engineer to serve as president of Georgia Tech. 42

1.2.5 Georgia Institute of Technology (1945–1956)

The postwar era marked the beginning of Georgia Tech’s transformation from a regional engineering college to a nationally and internationally recognized technological university. In 1944, Congress passed the Servicemen’s Readjustment Act (informally known as the G.I. Bill) which provided a range of assistance benefits for those who had served, including financial aid provisions for veterans to attend job training programs, colleges, and universities. The legislation had a major effect on secondary education in the United States after World War II as college admissions boomed across the country, including the thousands of returning soldiers who enrolled in Georgia Tech. In addition, many former students who had previously left the school to enlist in the service, now returned to complete their studies. 43

The student population at Georgia Tech grew tremendously during this period, more than doubling its pre-war high in 1940 of 2,900 students to 5,402 full-time day students by 1947. This sudden influx quickly overwhelmed the school’s resources. On a campus only equipped to serve approximately 2,600 students, classes met from 7:00 A.M. to 10:00 P.M. daily to accommodate the growing student body. By the late 1940s, it quickly became clear that the existing campus infrastructure could not adequately manage the growth. More of everything was needed, including student housing, classrooms, books, lab space, equipment, and faculty. 44

This post-war era brought several significant changes to Georgia Tech. One of President Van Leer’s first acts in office was to acquire additional land for the main Georgia Tech campus. Based on the master development plan prepared in 1944 (later modified in 1945 and 1946), and officially known as the Campus Expansion Program, the project more than doubled the size of the school’s footprint from 51 acres to 128 acres with the purchase of new property to the north of the original campus. Van Leer considered the expansion program a hallmark of his career at Georgia Tech. Key components of the plan included the construction of several new dormitories, a new library, the architecture building, a heating plant, classrooms, and laboratories. In addition to the physical development of the school, the new president moved to increase the

44 McMath et al., 238, 242–44.
number of faculty on campus from 150 to nearly 400 instructors over the first few years of his tenure.45

Van Leer also led the way to change the name of the school to better reflect Georgia Tech’s rising national profile, growth, and transformation into an educational institution comprised of various departments, schools, and research functions. Following a vote held in 1947 that was culled from an electorate of among 15,000 alumni on record, with 5,233 in favor and 1,495 opposed, the name was officially changed from the Georgia School of Technology to the Georgia Institute of Technology in 1948. In addition to the name change, President Van Leer and school administrators sought to broaden Georgia Tech’s curriculum, placed greater focus on science and advanced technology, and elevated degree-granting departments to school status.46

Georgia Tech also opened the Technical Institute in 1948 as a two-year, engineering extension division that was first housed in nine leased military surplus buildings at the Naval Air Station in Chamblee, Georgia. The inaugural class consisted of 166 students, many of whom were veterans. Later named the Southern Technical Institute, the school extension later relocated to Marietta, Georgia in the early 1960s and eventually became Southern Polytechnic State University as an independent institution in 1981.47

Admittance of Women Students

Another major change was the admission of women as full-time students at Georgia Tech. In the late 1940s and early 1950s, Georgia remained the only state in the country that did not offer an engineering degree to women. President Van Leer strongly supported the admission of women stating, “it is a matter of equality to admit women to the only tax-supported institution in the state offering engineering courses.” An initial attempt to implement a co-educational policy in 1947 failed due to professed concerns over the housing of female students and claims they would become an “academic distraction” for the wider, male student body.48 Undeterred, President Van Leer was joined by Dorothy Crosland, Georgia Tech’s longtime librarian, and his wife, Ella Van Leer, to continue advocating for the admittance of women at the Institute. Finally, the Georgia Board of Regents voted 7-5 in April 1952 to allow limited

45 Dunn et al., Ramblin’ Wrecks from Georgia Tech: A Centennial History of the Georgia Tech Alumni Association, 63; McMath et al., Engineering the New South: Georgia Tech, 1885-1985, 246–52.

46 Edwards and Toon, “Georgia Institute of Technology.”

47 McMath et al., Engineering the New South: Georgia Tech, 1885-1985, 238–41.

48 Technique, “Georgia Tech’s Proud History of Women Leaders,” Technique, March 31, 2010, https://repository.gatech.edu/server/api/core/bitstreams/a1f96c2a-c359-4f9c-8ca9-da0cfecfc48d/content.
enrollment of white female students only into the schools of engineering and architecture, as these were the only programs not offered at other institutions within the state university system.49

That fall, four women applied to Georgia Tech with Elizabeth Herndon and Barbara Diane Michel becoming the first women to successfully be admitted at the Institute. Reflecting on her time as one of the first woman students at Georgia Tech, Herndon recalled,

“Diane and I had all of our freshman classes together...we took our breaks at the Robbery together, and we visited in each other’s homes...we were good friends...Everything was new to both of us...most of the professors were very nice and very helpful [but] I think I had one physics professor who’d just as soon not have me in his class.”

Despite their ability to take classes, Herndon and Michel were still prohibited from joining athletic clubs and the ROTC at Georgia Tech. Herndon and Michel were joined the next year by Shirley Clements, an electrical engineering transfer student from the Carolina Teacher’s College in Cullowhee, North Carolina.

Herndon, Clements, and Ella Van Leer were among the founding members of the Gamma Eta chapter of Alpha Xi Delta sorority at Georgia Tech in 1954.50 The students established a chapter of the Society of Women Engineers on campus in 1956. That same year, Clements and Michel graduated with engineering degrees as the Institute’s first female alumnae (Herndon was unable to complete her studies due to the birth of her second child). In 1957, Paula Stevenson became the first woman elected to the Ramblin’ Reck Club.51 Clements would later become the first woman to serve as president of the Georgia Tech Alumni Association. She was unanimously elected to the Georgia Technology Hall of Fame in 2003. Georgia Tech’s softball stadium, Shirley Clements Mewborn Field, was dedicated in her honor following completion of the facility in 2009.52

49 Dunn et al., Ramblin’ Wrecks from Georgia Tech: A Centennial History of the Georgia Tech Alumni Association, 68.
51 McMath et al., Engineering the New South: Georgia Tech, 1885-1985, 259–230.
1.2.6 Georgia Institute of Technology (1957–1968)

A less celebratory event for the Georgia Tech community also occurred in 1956 when President Van Leer suffered a heart attack and died on January 23rd of that year. Following his sudden death, the Georgia Board of Regents selected Dean of Faculties and Chemistry Professor Paul Weber to serve as acting president for eighteen months. Soon thereafter, the board appointed Edwin D. Harrison to become the Institute’s sixth president in August 1957. Prior to his arrival at Georgia Tech, Harrison had previously served as the Dean of Engineering at the University of Toledo in Ohio and Assistant Dean at Virginia Tech.53

After stepping into his new position, President Harrison continued to work closely with Weber in his administration, which was a period of considerable physical and social change for Georgia Tech. He addressed an immediate financial need by strengthening the supplement program that supported the Institute’s ability to pay competitive salaries to faculty and administrators—a major issue, along with the questions surrounding racial desegregation of the Institute, that had hampered the Board of Regents’ search for Van Leer’s replacement as president. Increased state support and additional funding through the Alumni Foundation provided much needed money to compensate faculty members who might otherwise leave the Institute for better-paying jobs at other educational institutions or in the private sector.54 Harrison also moved to strengthen Georgia Tech’s entrance requirements over a five-year period to ensure new students would have the proper academic backgrounds needed to properly handle the Institute’s challenging curriculum.55

A major legacy of President Harrison’s administration was his management of an extensive period of physical growth at Georgia Tech—one that historian Robert McMath called “the biggest campus expansion and building boom in the school’s history until the 1990s.”56 Over the course of his twelve-year tenure as president, Georgia Tech began moving forward with the acquisition of 128 acres in the adjacent Home Park neighborhood (formerly known as the Chastaintown community), a mixed commercial and residential area generally located west of Hemphill Avenue and north of Ferst Drive. Despite some initial opposition by a few neighborhood residents and state politicians, the expansion program would effectively double the size of the campus and provide

54 Dunn et al., Ramblin’ Wrecks from Georgia Tech: A Centennial History of the Georgia Tech Alumni Association, 76.
55 McMath et al., Engineering the New South: Georgia Tech, 1885-1985, 310–11.
56 Technique, “Obituary, Edwin Harrison.”
Georgia Tech with much needed space to grow in the late twentieth century.

The Institute also completed or initiated construction funding for 50 new buildings on campus, including a nuclear reactor, several new classrooms, residence halls, laboratories, and other assorted buildings. This development boom was made possible in large part through new government land acquisition and construction funding sources, primarily through federal urban renewal and the state University System Building Fund. Meanwhile, alumni contributions continued to provide supplemental assistance and financial support for research equipment and teaching materials.\(^\text{57}\)

Debut of the Ramblin’ Wreck

In May of 1961, Georgia Tech purchased the official “Ramblin’ Wreck,” a restored 1930 Ford Model A coup, at a cost of $1,000. The Ramblin’ Wreck made its debut before 43,502 fans at Grant Field during Georgia Tech’s 24-0 shutout of Rice University on September 30, 1961. The distinctive gold and black antique car instantly became the Institute’s most beloved, and popularly recognized, mascot, making appearances at all home and away football games and other public and sporting events over the following decades. The Ramblin’ Reck Club assumed responsibility for the mascot in 1967, the car received its current white and gold color scheme in 1973, and Lisa Volmar became the first woman to drive the mascot in 1984. In March 2023, Georgia Tech opened the permanent home for the Ramblin’ Wreck, a fully functional garage and car wash station, located adjacent to the Penny and Roe Stamps Student Center Commons.\(^\text{58}\)

Desegregation of Georgia Tech in 1961

Another important milestone was achieved at Georgia Tech early in President Harrison’s tenure when Georgia Tech became the first major state university in the Deep South to admit African American students without a court order in 1961.\(^\text{59}\) In the years after the 1954 U.S. Supreme Court landmark decision in Brown vs. the Board of Education that ruled state-sanctioned segregation of public schools to be unconstitutional, resistant colleges and universities throughout the South experienced

\(^{57}\) McMath et al., *Engineering the New South: Georgia Tech, 1885-1985*, 312; Georgia Institute of Technology, “Urban Renewal Project No. II” (Atlanta, Georgia: Georgia Institute of Technology, 1966), Inventory of the Urban Renewal Projects Records, 1941-1974, Archives and Special Collections, Library, Georgia Institute of Technology Repository.

\(^{59}\) Edwards and Toon, “Georgia Institute of Technology.”
student demonstrations and outbursts of violence in response to federally mandated racial integration of these institutions. At the University of Georgia, a similar violent demonstration broke out in front of the dormitory housing two Black students following a loss to Georgia Tech in basketball on the evening of January 11, 1961.\(^{60}\)

Seeking to avoid such violence and negative publicity, President Harrison and Georgia Tech elected to take a different approach. Working in coordination with Atlanta’s political and business leadership, faculty and staff on campus, and administrators at other southern colleges and universities that had undergone federally mandated desegregation, President Harrison and his staff began developing a strategy for peaceful integration at Georgia Tech in early 1961. He made his first public policy statement addressing the impending desegregation of Georgia Tech before 2,700 students, faculty, and staff who crowded into the Heisman Gymnasium on January 17, 1961. That appearance would be the first of numerous meetings held by the Institute’s administration with student and alumni groups over the next several months to discuss the process.\(^{61}\)

Finally, on September 15, 1961, Georgia Tech admitted Ford Greene, Ralph Long, Jr., and Lawrence Williams as the first three African American students to attend the Institute from a larger pool of 13 applicants. Racial integration at Georgia Tech was without the physical violence and widespread public protests by whites that had plagued other academic institutions in the state and region. However, the first Black students at the Institute were largely shunned by the white student body and some members of the faculty.

While Greene, Long, and Williams were the first African Americans to enroll at the Institute, the notable distinction of being the first Black graduate at Georgia Tech would go to Ronald Yancey, a native Atlantan who received his degree in electrical engineering in 1965. As one of the only African American students on campus, Yancey endured isolation by his white classmates, was actively discouraged from attending games and other on-campus public events, wrongly told by faculty and administrators that he needed to maintain a B average for graduation, and issued burdensome assignments that were not required of white students.\(^ {62}\) However, looking back on his experience, Ronald Yancey felt he was mentally and spiritually prepared for the challenges he faced as a pioneering student at Georgia Tech.

“I met hostility. Fortunately, having been in demonstrations and sit-ins in downtown Atlanta, I had some skills in identifying when a crowd was becoming dangerous. I knew how to watch my back, but I never felt like I was alone on campus because of my faith. But to give you some perspective, the whole time I was at Tech, I only saw a Black student twice on campus.”

The groundbreaking accomplishments of Ford Greene, Ralph Long, Jr., Lawrence Williams, and Ronald Yancey were commemorated with bronze sculptures of the four men that were dedicated and installed on the Georgia Tech campus in 2019.

Ties to the National Space Program

In 1962, the Guggenheim School of Aeronautics changed its name to the School of Aerospace Engineering to better reflect the programs expansion beyond aeronautics and into the growing field of aerospace research, engineering, and development. That same year, the National Aeronautics and Space Administration (NASA) selected John Young, a Navy pilot and 1952 graduate from Georgia Tech with a degree in aeronautical engineering, as part of the second group of nine astronauts that would succeed the original Mercury Seven. Over his 42 years with NASA, Young would serve as pilot and commander on multiple Gemini and Apollo mission programs. In 1972, he walked on the moon as commander of the Apollo 16 mission and in 1981 he commanded the Columbia Space Shuttle on its first flight.

A $1 million grant presented by NASA to the Institute in 1963 further solidified Georgia Tech’s relationship with the national space program in the 1960s and helped fund the construction of a four-building Space Science and Technology Center on campus that was later completed in 1968 (now known as the Paul Weber Space Science & Technology buildings, the Montgomery Knight Aerospace Engineering Building, and the original Aerospace Combustion Lab at 870 Cherry Street that was demolished circa 2000). Over the next several decades, a total of 14 Georgia Tech graduates would go on to become astronauts, a tie for the second most produced from a publicly funded university, with many of the men and women serving on Space Shuttle and International Space Station (ISS) missions.

Early Diversification of the Faculty and Student Body

Georgia Tech witnessed additional important milestones over the course of the 1960s as the student body started to diversify. While male students from Asia, Cuba, Mexico, and South America first began registering at the Institute after World War I, the number of foreign students grew considerably in the 1950s, resulting in the creation of the Student Council International Students Committee in 1960 and an International Students Organization (ISO) as part of the Student Advisory Committee to the President in 1963. In 1966, Sally Lam Woo, a native of Hong Kong, became the first Asian woman to graduate from Georgia Tech, earning her degree in Chemical Engineering. At the time, Woo was one of only 30 women within the whole student body.70

In 1966, Georgia Tech’s student-operated radio station, WREK 91.1 FM, began broadcasting from an antenna on the Van Leer Electrical Engineering Building. That same year the Board of Regents finally rescinded its earlier limitation on female admissions by allowing women to enroll in all the Institute’s programs. The administration hired Helen E. Grenga as a professor in the College of Engineering’s metallurgy program, making her the first full-tenured female professor at Georgia Tech. Grenga would later serve as vice president and president of the Society of Women Engineers, a director in Georgia Tech’s Office of Graduate Studies, and dean in the Office of Academic Affairs.70

In October of 1968, a group of 17 Black students on campus organized the Georgia Tech Afro-American Association (GTAAA). The GTAAA sought to accomplish several broad goals for African American students at Georgia Tech and the Institute as a whole. These aims included bringing an awareness to the wider white student body of Black contributions to American life, assisting and actively guiding new and existing African American students during their time at Georgia Tech, providing them with a social outlet on and off campus, and advocating on their behalf to the student government and administration.71

President Harrison submitted his resignation in July 1968, which came as

67 Bob Rhinehart, “International Committee Reviews Accomplishments,” Technique, November 8, 1963, Georgia Tech Digital Repository; Georgia Institute of Technology, Blue Print (Atlanta, Georgia: Georgia Institute of Technology, 1963), http://hdl.handle.net/1853/24453.[Citation]
71 Georgia Tech Afro-American Association, “Georgia Tech Afro-American Association Charter” (Atlanta, Georgia, 1968), Georgia Tech Afro-American Association Records, Archives and Special Collections, Library, Georgia Institute of Technology Repository.
a shock to many at the Institute and beyond. Harrison had steered the Institute through a period of tumultuous change and growth during the 1960s as one of its most beloved presidents. His resignation announcement sparked a student demonstration of admiration. Over 3,000 students and a host of local leaders, including Atlanta Mayor Ivan Allen, Jr., gathered in the campus quadrangle to celebrate the Institute’s outgoing president on April 9, 1969, that was designated “Wonderful Ed’s Day” in his honor. During the ceremonies a group of students, mysteriously known as “The Magnificent Seven,” presented him with the letter “T” that was stolen from the metal sign adorning Tech Tower—the start of a popular, and often contentious, campus tradition at Georgia Tech. Harrison would go on to work as the executive vice president of services for J.P. Stevens and Company over the next seven years before eventually retiring. Edwin Harrison died at his home in Virginia on October 23, 2001, at the age of 85.\(^{72}\)

1.2.7 Georgia Institute of Technology (1969–1994)

The Board of Regents appointed Dr. Arthur Hansen to be Georgia Tech’s seventh president on August 1, 1969. The youthful Wisconsin native had served as Dean of Engineering at Georgia Tech since 1966 and was only 44 years of age at the time of his appointment. During his time at Georgia Tech, Hanson initiated reforms to the core curriculum and helped the Institute and the student body navigate the turbulent political and social changes sweeping the country with few disruptions on campus. He successfully oversaw the second phase of urban renewal land acquisition within the adjacent Home Park neighborhood, which was first undertaken during the administration of his predecessor. Several campus improvements were also completed during his tenure, including completion of the Student Center (and the Institute’s corresponding financial break with the YMCA), opening of Fulmer Hall, the first women’s dormitory at Georgia Tech, additions to the library and computer center, and new buildings for the chemistry, physics, and civil engineering programs.\(^{73}\) President Hansen’s time as president of Georgia Tech would be short-lived, however. Brewing conflicts over general budget cuts and the administration and financing of the Engineering Experiment Station spurred Hansen’s resignation in July 1971 to become president of his alma mater, Purdue University.\(^{74}\)

\(^{73}\) McMath et al., Engineering the New South: Georgia Tech, 1885-1985, 379, 381.

Joseph M. Pettit (1972–1986)

The Georgia Board of Regents’ appointment of Dr. Joseph M. Pettit as the eighth president of Georgia Tech on October 5, 1971, came at a time of flagging finances and declining student enrollments brought on by lowered state appropriations and federal cutbacks to military research and space exploration programs. A native of Rochester, Minnesota, President Pettit received his bachelor’s degree in engineering from the University of California in 1938 and his Ph.D. from Stanford University in 1942. Prior to his arrival at the Institute in early March 1972, Pettit had served as Dean of the Stanford University School of Engineering, a position he had held since 1958, and was president-elect of the American Society for Engineering Education.\(^75\)

Administratively, President Pettit moved forward with contentious changes in faculty hiring standards, appointments, and tenure procedures. He also pushed to improve the Institute’s graduate programs and supervised the establishment of the School of Architecture as Georgia Tech’s fourth college in 1975 (separate from the School of Engineering). In 1978, approximately 10 acres containing the historic core of the Georgia Tech campus, dating from 1885 to 1923, was listed in the National Register of Historic Places; however, modern development and expansion of the campus stalled during much of President Pettit’s tenure in the 1970s. Optimistic projections for a 400-acre campus that were outlined in the 1965 Perkins & Will master plan, never materialized and only a few notable buildings were constructed at Georgia Tech over the course of the decade, including the Rich Computer Center in 1973, a new student athletic center, completed in 1977, and the Architecture West building, which opened in 1980 and was designed to house the architecture laboratories that had previously been scattered in various locations throughout the campus.\(^76\)

The Advanced Technology Development Center (ATDC) also began operations in 1980 in temporary facilities housed in the O’Keefe Junior High School building, which the Institute acquired in 1979. The ATDC was proposed as an advanced technology research and business incubator. It was modeled after similar programs located in technology hubs such as Northern California’s Silicon Valley, the North Carolina Research Triangle, and centered around the metropolitan Boston area in Massachusetts. Creation of the ATDC facilitated President Pettit’s establishment of the Microelectronics Research Center in 1981 and positioned Georgia Tech as a leader in high technology research and development as it prepared to celebrate its 100th anniversary and later move forward into the twenty-first century.\(^77\)

\(^{76}\) McMath et al., Engineering the New South: Georgia Tech, 1885-1985, 417–18.
\(^{77}\) McMath et al., 446–48.
Growing Diversification in the 1970s and 1980s

Another key focus of Pettit’s early administration was creating a more diversified student body at Georgia Tech throughout active recruitment of women, African American, and international students. Enrollment at the Institute had declined to 8,000 students in 1973 but rebounded in 1974 and would hit a total of 11,393 students by 1982. The rise in female students would account for a sizable amount of the growth during this period. ROTC programs were opened to women in the late 1960s and in 1974 Georgia Tech established a women’s basketball program on an intramural basis two years after the passage of Title IX civil rights law under the federal Education Amendments of 1972, which barred educational institutions that received federal financial assistance from discriminating based on sex. Amy Wepking became the first woman to be elected student body president in 1978 and Georgia Tech’s women’s basketball was elevated to the intercollegiate level in 1981 with former University of North Carolina star, Bernadette McGlade, serving as the first coach. By 1982, women would account for 20 percent, or 2,421 of the Georgia Tech student body.78

Meanwhile the number of Black students enrolled at the Institute grew from 100 in 1972 to 700 a decade later in 1982. Grace Hammonds Nibaldi, Tawana Miller, Adesola Kujoure Nurudeen, and Clemmie Whatley were among the first Black women to enroll at Georgia Tech in 1970. Dr. Whatley and Dr. Nibaldi would go on to become the first Black women to graduate from the Institute, receiving their Master of Science degrees in Applied Mathematics in 1973.79 In January of 1974, the GTAAA began publication of the student organization’s newsletter, which became an important source of information, creative expression, and forum for an exchange of ideas among Black students at Georgia Tech. In 1976, the Delta Kappa Chapter of Omega Psi Phi Fraternity became the first chartered Greek organization for Black students at the Institute. Students also established a chapter of the National Society of Black Engineers around this same period and Dr. Augustine Esogbue became the first fully tenured Black faculty member of Georgia Tech in 1977. Two years later, in 1979, the National Pan-Hellenic Council approved the charter for the Alpha Kappa Alpha, Nu Beta Chapter as the first sorority for Black women at the school.80 Despite these gains, problems persisted with the treatment of Georgia Tech’s African American students by the administration and larger student body, resulting in several grievances.

78 McMath et al., 426–28; Georgia Institute of Technology, Office of the Vice President for Academic Affairs, Georgia Tech 1982-83 Fact Book (Atlanta, Georgia: Georgia Institute of Technology, 1983), 1982–83, https://irp.gatech.edu/fact-book.
filed by the GTAAA during the 1970s and the creation of the Office of Minority Educational Development in 1980.\footnote{McMath et al., Engineering the New South: Georgia Tech, 1885-1985, 428.}

While approximately 60 percent of the student population was from Georgia in the 1970s, the number of international students enrolled at Georgia Tech also increased as the Institute cultivated a growing national and international presence in the late twentieth century. At the start of the 1970 academic year, 381 students from 59 different countries were enrolled at the Institute in graduate (263) and undergraduate (118) programs. Most students (91) were from Taiwan followed by India, Hong Kong, Thailand, and Venezuela. Those from Puerto Rico were also counted in this number and constituted the third highest number of “international” students with 26.\footnote{William Miller Templeton, “Annual Report, 1969-70, Assistant Dean of Students, International Student Advisor” (Atlanta, Georgia, 1970), Archives and Special Collections, Library, Georgia Institute of Technology Repository.} By 1980, the numbers had almost tripled with approximately 800 international students from 75 countries enrolled at Georgia Tech in the graduate (51 percent) and undergraduate (49 percent) programs. Most continued to come from Taiwan, followed by Iran, and India. Additionally, eight percent of the international student body in 1980 hailed from African nations—a marked change from 1974, when there were no African students. To serve the growing international student population, Georgia Tech printed an informative newsletter, Internat, six times during the school year, and began publication of the International Student Handbook in 1979.\footnote{William Miller Templeton, “Annual Report, 1979-80, Assistant Dean of Students, International Student Advisor” (Atlanta, Georgia, 1980), Archives and Special Collections, Library, Georgia Institute of Technology Repository.} The students also formed clubs and organizations on campus revolving around nationalities, ethnicities, and spoken languages for community support and social networking purposes.

President Joseph M. Pettit died on September 15, 1986, after a long battle with lymphoma. Following his death, the Georgia Board of Regents selected Dr. John Patrick Crecine in August 1987 to become the ninth president of Georgia Tech. President Crecine received his B.S. in industrial management and his M.S. and Ph.D. in industrial administration at Carnegie-Mellon University. He began his career at the University of Michigan in 1968, where he rose to become the director of the Institute for Public Policy Studies. In 1976, his alma mater, Carnegie-Mellon University, selected President Crecine as dean of the College of Humanities and Social Services. He became the senior vice president in 1983 and helped guide the Institute’s development and implementation of a $26 million computer system for students, faculty, and staff.\footnote{Hank Ezell and Walter W. Miller, “Carnegie-Mellon Official Accepts Tech Presidency,” Atlanta Journal, August 5, 1987, 1A, 5A, Newspapers.com.}
The Board of Regents and Georgia Tech officials tasked President Crecine with elevating the Institute’s academic profile boosting fundraising operations. In his first address to faculty members, he proclaimed he would work at Georgia Tech “to develop a new kind of university geared more toward teaching about the future” and during his seven-year tenure as president, Crecine initiated an ambitious, and often combative, academic restructuring program. President Crecine’s goals were outlined in the report “International Education for the 21st Century: The Role of a Technological University” published in March 1989. The report recommended the development of opportunities that would “internationalize the existing curriculum” through a restructuring of humanities and social services requirements, and expanded study abroad programs. These changes would eventually lead to the creation of the College of Computing, College of Management, and the Ivan Allen College of Liberal Arts at Georgia Tech. \(^85\)

President Crecine was also an instrumental figure in helping Atlanta win the bid to host the 1996 Centennial Olympic Games and securing Georgia Tech’s role as the host for the Olympic Village. The years immediately following the International Olympic Committee’s award to Atlanta in September 1990, witnessed a flurry of planning and construction projects on the Georgia Tech campus that would not only prepare for the games but also serve the Institute over the next 25 years. Among the core planning needs required to transform Georgia Tech into a “24-hour, mixed-use environment” were the construction of 2,700 new housing units, siting for proposed Olympics facilities, development of additional greenspace, creation of a comprehensive campus bicycle system, enhanced pedestrian and vehicular circulation networks, and improved disability access.\(^86\) Reflecting on the work that had been done, President Crecine was highly optimistic that Georgia Tech would meet and exceed expectations as host for the Olympic Village,

“We’re a city where almost 13,000 students show up every day... We’ve got an infrastructure, in addition to housing, to support a population similar to the Olympic athlete population. We have the potential to have far and away the best Olympic Village ever.”\(^87\)

86 Georgia Tech Master Plan Committee, “Georgia Tech Campus Master Plan Executive Summary” (Atlanta, Georgia: Georgia Institute of Technology, 1991), Inventory of the Campus Master Planning Committee Records, 1991-1998, Archives and Special Collections, Library, Georgia Institute of Technology Repository.

The official groundbreaking for new Olympic Village housing occurred on January 18, 1992. Four tower dormitories of the total 17 total buildings erected for the games were reserved for Georgia State University student housing on the former site of Techwood Homes located just south of the Georgia Tech campus at North Avenue and Techwood Drive (now known as the North Avenue Apartments). Groundbreaking for the Aquatic Center on the campus, which was designed to host the swimming, diving, synchronized swimming, and water polo competitions, was held over a year later, on July 6, 1993. In addition to those new facilities, the Alexander Memorial Coliseum was scheduled to host boxing matches while the adjacent O’Keefe Gymnasium would be used as an athletic warm-up venue.88

Historian Augustus Giebelhaus also credited President Crecine, along with his work in reorganizing the Institute’s academic structure and preparing for the Olympics, with reshaping the culture on campus as well, noting, “For a very, very long time, Georgia Tech was known as an institution with almost a boot camp-like reputation...what Pat Crecine addressed was a change in the ethos on campus making Tech a less intimidating landscape.”89

The Georgia Tech Gay and Lesbian Alliance (GALA)

Part of that change in culture was reforging ties between the Institute and the City of Atlanta, the creation of new study abroad opportunities with the establishment of the Georgia Tech-Europe (GTE) campus in Metz, France in 1990, and a growing of recognition of underrepresented communities on the Georgia Tech campus, including the Lesbian, Gay, Bisexual, Transgender and Queer (LGBTQ+) student population.90 A small group of gay students at Georgia Tech first organized the Georgia Tech Gay Academic Alliance in 1977; however, the group’s charter was revoked in 1983 after a period of prolonged inactivity. In February 1988, LGBTQ+ students and faculty at Georgia Tech formed a new support group known as the Gay and Lesbian Alliance (GALA).

The group received its official charter following a contentious debate and ballot by the Georgia Tech Student Government Association, which approved the club by only one vote. As with other student groups, GALA members sought to encourage greater awareness and acceptance among the larger Georgia Tech community and often faced considerable anti-
LGBTQ+ backlash from current students, their parents, and alumni. The group also fostered social events for members through organized talks, information sessions, parties, and picnics, and established networking opportunities with outside LGBTQ+ student groups (Emory University and Georgia State University, in particular), and the wider LGBTQ+ community in Atlanta. GALA was later renamed the Pride Alliance in 2002 and the organization’s mission was expanded to serve the school’s LGBTQ and ally student population.

1.2.8 Georgia Institute of Technology (1994-Present)

G. Wayne Clough became Georgia Tech’s tenth president in 1994 and he was the first alumnus to hold that position. Clough received his bachelor’s and master’s degrees in civil engineering from Georgia Tech in 1964 and 1965, respectively. He received his Ph.D. in civil engineering from the University of California at Berkeley. Prior to becoming president of Georgia Tech, Clough previously taught at Stanford and Duke universities, served as the Dean of Engineering at Virginia Tech, and was the provost and vice president for Academic Affairs at the University of Washington.

During Clough’s tenure Georgia Tech served as the Olympic Village for the 1996 Olympic and Paralympic Games. The Institute also accelerated expansion into the new fields of biosciences and bioengineering. Georgia Tech’s five-year capital campaign raised more than $700 million, putting the Institute on a course for a massive building campaign to support its growth in academic, research, and service endeavors. With the development of Technology Square in 2001, the Institute began developing property to the east of the Downtown Connector, bridging a barrier to eastward expansion that had existed since the Interstate was created in the 1950s.

Within the student body, Georgia Tech set new records in its enrollment of international students during the early 2000s. Almost 3,000 international students enrolled at the Institute in the 2002-2003 school year. The number of incoming freshman international students jumped...
57.5 percent the following year, with a majority coming from India, China, and South Korea, followed by Canada, and Pakistan.94

Also, to meet the needs of its growing student population, both domestically and internationally, Georgia Tech continued to expand its distance learning programs, which began in 1977 as the Center for Media-Based Instruction (CMBI) with educational courses provided to Georgia Power field engineers via satellite transmission and videotapes. In 1987, the Institute awarded its first master’s degree to a distance program graduate for electrical engineering and by the early 1990s, more than 1,000 students were enrolled in the CMBI, which was renamed Center for Distance Learning. During President Clough’s tenure during the 1990s and early 2000s, the Center for Distance Learning significantly increased the number of master’s degrees offered by Georgia Tech and rapidly transitioned its technology platforms from televised courses and CD-ROMS to the streaming of online classes worldwide.95

President Clough resigned in July 2008 following his 14-year tenure to become the Secretary of the Smithsonian Institution in Washington D.C. Gary B. Schuster took over temporary leadership of the Institution from Clough, serving as interim president from July 2008, until April 2009. Schuster had served as dean of the College of Sciences for 12 years prior to becoming provost and executive vice president for Academic Affairs in 2006.96

George P. Peterson (2009-2019)

The Georgia Board of Regions named Dr. George P. “Bud” Peterson the eleventh president of Georgia Tech on February 25, 2009, and he assumed his position on April 1, 2009. A native of Palo Alto, California, President Peterson received his B.S. in Mechanical Engineering and Mathematics and an M.S. in Engineering from Kansas State University and his Ph.D. in Mechanical Engineering from Texas A&M University. Prior to his appointment at Georgia Tech, he had served as chancellor of the University of Colorado since 2006.97 During his 10-year tenure as president, Peterson continued the expansion of the Georgia Tech’s footprint around Technology Square in Midtown, oversaw the development of the 25-year strategic plan, and helped the Institute reach

95 Georgia Institute of Technology. 2017. “40 Years of Learning at a Distance.” Georgia Tech Professional Education. 2017. https://pe.gatech.edu/media/image/40thimelineupdatedjpg.

the $1 billion benchmark in research funding. Georgia Tech also expanded its global presence in Asia and Central America during this period, establishing the Centre for Next Generation Logistics joint research initiative in Singapore in 2015, the Georgia Tech Tianjin University Shenzhen Institute partnership in China in 2016, and the Center for Research, Education, and Innovation in Panama in 2017.

Ángel Cabrera (2019-Present)

Ángel Cabrera became the 12th president of Georgia Tech on September 1, 2019, the first native of Spain to serve as president of a university in the United States. Like his predecessor, G. Wayne Clough, President Cabrera was also a Georgia Tech alumnus, earning his M.S. and Ph.D. in psychology and cognitive science from the Institute as a Fulbright Scholar. He received his B.S. and M.S. in computer and electrical engineering from the Universidad Politécnica de Madrid. Before coming to Georgia Tech, President Cabrera served as President of George Mason University, a position he held since 2012. One of the first campaigns under his administration was the development of a new 10-year strategic plan for Georgia Tech.

By 2022, Georgia Tech was one of the fastest-growing premier research universities in the country, receiving more than $2.3 million in revenue and supporting an enrollment of more than 45,000 undergraduate and graduate students. The Institute employs 8,594 faculty and staff. Of that number, 1,309 are academic faculty and 930 members of the faculty hold tenured or tenure-track positions.

99 Georgia Institute of Technology, “Global Presence.”
100 Georgia Institute of Technology, “Angel Cabrera, President, Georgia Tech,” Georgia Tech, 2023, https://president.gatech.edu/about/biography.
1.3 CHRONOLOGY OF DEVELOPMENT AND USE

1.3.1 Periods of Development at Georgia Tech

The built environment at Georgia Tech is defined by six primary phases of development. These phases generally correspond to the historical periods associated with the terms of Institute presidents as well as broader events and cultural shifts that affected the lives of the students, faculty, and administrators.

Phase I: 1885–1922

Phase I comprises the first 37 years after the Institute’s founding in 1885 as the Georgia School of Technology. It includes the tenures of three presidents—Isaac Hopkins (1888–1896), Lyman Hall (1896–1905), and Kenneth Matheson (1906–1922). Steady growth of the student body, faculty, and curriculum characterized this early period of the Institute’s development. America’s entry into World War I and the Army’s selection of Georgia Tech as the Ground Flight Training School for the Army Air Corps required several changes to the campus during the early twentieth century. After the conflict ended, administrators embarked on a fundraising campaign to raise money for an expansion of campus infrastructure that could support the postwar surge of students at Georgia Tech. Between 1885 and 1922, the campus grew to encompass 13.5 acres and contained 12 buildings, including the Academic Building (now Tech Tower) and the first and second Shop Buildings (1888 and 1892); Aaron S. French Building (1898); Janie Austell Swann Building (1900); Electrical Engineering Building (1901; now the Domenico Savant Building); Lyman Hall Building and Andrew Carnegie Building (1906); the Infirmary (1910; now the Lloyd W. Chapin Building); Y.M.C.A. (1911; now the L.W. Robert Alumni Faculty House); the Power Plant (1914; now the Archibald D. Holland Plant); and the Mechanical Engineering Building (1920; now the John Saylor Coon Building).

Phase II: 1922–1944

Phase II spans the next 22 years of Georgia Tech’s history and development, covering President Marion L. Brittain’s (1922–1944) period of leadership. During this time, the State of Georgia created the Board of Regents in 1931 to oversee the University System of Georgia, and the Institute grappled with the dire economic effects of the Great Depression, an influx of federal funding via New Deal programs, and impacts from America’s involvement with World War II. The campus continued to grow with the construction of 27 buildings, which included: the David Melville Smith Building (1923), the Julius Brown Residence Hall (1925); Marion L.
Brittain Dining Hall (1928); Daniel F. Guggenheim Building (1930); Hinman Highbay Building (1939); the Old Civil Engineering (1939); and the J.L. Daniel Laboratory (1942), among others. Near the end of Phase II, the Department of Architecture began work in 1944 on a series of site master plans that would help guide campus development at Georgia Tech into the post-war era.

Phase III: 1944–1956

Phase III extends from 1944 to 1956 and corresponds to Blake Van Leer’s tenure as president of Georgia Tech. This phase was marked by a rapid increase in student enrollment during the post-war period due to the influx of veterans attending college on the G.I. Bill. In 1948, the school’s name changed from the Georgia School of Technology to the Georgia Institute of Technology. President Van Leer was also instrumental in the ultimate approval by the Georgia Board of Regents to admit women to the Institute as full-time students, beginning in 1952. Expansion of the campus from 51 acres to 128 acres and the construction of 18 buildings reflected the sizable growth of Georgia Tech during the post-war period. These new buildings included: the Flippen D. Burge Apartments (1947); John M. Smith, Donigan D. Towers and William H. Glenn Residence Halls (1947); President’s House (1949); W.C. and Sarah Bradley Building (1951); the Architecture Building (1952); and Judge S. Price Gilbert Memorial Library (1953), among others.

Phase IV: 1957–1973

Phase IV covers the administration of President Edwin D. Harrison from 1957 to 1968 and Arthur Hansen from 1969 to 1971. Both student enrollment and faculty continued to expand during this period and in 1961 Georgia Tech became the first major state university in the Deep South to admit African American students without a court order. Phase IV also represented one of the most extensive periods of development in the Institute’s history with the construction of 26 buildings over a 13-year span. New facilities erected during that time included: the William A. Alexander Memorial Coliseum (1957; now the Hank McCamish Pavilion); the William Vernon Skiles Classroom Building (1959); the Blake R. Van Leer Electrical Engineering Building (1961); Floyd Field, Kenneth G. Matheson, William G. Perry, Major John Hanson, and Isaac S. Hopkins Residence Halls (1961); Frank H. Neely Research Center (1963); the Joseph H. Howey Physics Building (1967); the Dorothy M. Crosland Tower (1968), and the Rich Computer Science Building (1973).

Phase V: 1974–1993

Phase V captures much of Georgia’s Tech’s history in late twentieth century, from 1974 to 1993 and includes the tenures of two presidents, Joseph M. Pettit (1972–1986) and John P. Crecine (1987–1994). This period of development is characterized by the construction of over 70 buildings on campus, including Architecture West (1980), William C. Wardlaw Jr. Center (1987), Joseph M. Petit Microelectronic Research Building (1988), Charles A. Smithgall Jr. Student Services (1990), Fuller R. Callaway Jr. Manufacturing Research Center (1990), and the Robert Ferst Center of the Arts (1992). From a historic preservation standpoint, a significant event during this period was the listing of the Georgia Institute of Technology Historic District in the National Register of Historic Places (NHRP) in March 1978. The historic district, which is situated on and around the crest of “the Hill,” constitutes the Institute’s original nine-acre campus and contains 12 buildings constructed between 1885 and 1923.

Phase VI: 1994–2022

Phase VI of the Institute’s history begins in 1994 and continues through 2022. This last phase covers the recent administrations of presidents G. Wayne Clough (1994–2008), George P. Peterson (2009–2019), and Ángel Cabrera (2019–Present). This phase is primarily characterized by the Institute’s significant involvement with the 1996 Centennial Olympic Summer Games, the eastward expansion of the Georgia Tech campus across the I-75/85 corridor into Midtown, and growth of the Institute’s global presence with the opening of new international campuses and research centers in China, Singapore, Panama, and the Middle East.
1.3.2 Pre-Institution History

In 1860, the City of Atlanta had a population of 9,554 people and only occupied the physical location known today as the downtown central business district that is centered around the nexus of railroad lines in the Five Points area. The land that is now the site of the Georgia Tech campus was once owned by Richard C. Peters, a railroad man, turned streetcar mogul and speculative real estate developer, who first came to Georgia as the chief engineer for the construction of the Georgia Railroad from Augusta to Marthasville (now Atlanta). Prior to the Civil War, Peters purchased 405 acres (land lots 80 and 47) just outside the city limits of Atlanta. As the city expanded in the late nineteenth century, this land eventually formed the lower section of what is now Midtown Atlanta between North Avenue and Eighth Street.

By the spring of 1864, the approach of Sherman’s army led to the creation of the first comprehensive line of defensive works around Atlanta. While these first defense lines were located to the south of what is now the Georgia Tech campus, there were three redoubts or forts located north of the line that were situated within the land area that would become the Georgia Tech campus (identified as X, Y and Z on Plate 51 of the Official Military Atlas of the Civil War). By the summer of 1864, these redoubts were incorporated into a second, outer defensive line that cut across what is now the southern portion of the campus.

Local Civil War expert and illustrator Wilbur Kurtz plotted the location of this line, and other local Civil War features, as part of a 1938 Chamber of Commerce map of the city designed to capitalize on tourist interest aroused by the imminent release of the film, “Gone with the Wind.” According to Kurtz’s map, “X” almost surely became “Fort Hood.” By the time of the siege of Atlanta, Fort Hood figured prominently as the city’s northwest salient. The identification of “Y” and “Z” is more uncertain, but they probably became unnamed bastions within the outer line, east of Fort Hood. Another local feature shown on the 1938 Kurtz map is the site of the Ephraim G. Ponder House, located off Marietta Street, just east of Fort Hood. Even though none of these features are now standing, Kurtz’s map leaves little doubt as to the location of the Fort Hood site, which today would be located between Marietta Street and what is now Tech Parkway.

103 William Matthew Tankersley, Mark Swanson, and Brad Botwick, “The Georgia Institute of Technology Archaeological Site Probability Update, Fulton County, Georgia” (Atlanta, Georgia: Lord Aeck Sargent, 2009).
105 Tankersley, Swanson, and Botwick, “The Georgia Institute of Technology Archaeological Site Probability Update, Fulton County, Georgia.”
106 Tankersley, Swanson, and Botwick.
In the decades following the Civil War, the Atlanta city limits radiated outward to the north and northwest. The first urban expansion into the area of what is now the Georgia Tech campus began in the 1880s. Initially, industrial development began along Marietta Street (originally Marietta Road). The first Sanborn fire insurance map of Atlanta that depicts any part of the campus dates from 1892 and shows the area along Marietta Street. This map indicates that the area was starting to be used for light industry and commercial development. Both the 1892 and 1899 maps depict this development along Marietta Street, specifically north of North Avenue and south of Wallace Street. From North Avenue to Wallace, moving south to north, these developments were the Randall Brothers Lumber Yard, the Atlanta Furniture Factory, and the Georgia Rose Houses. North of Wallace, Marietta Street turned residential, with small, single-family houses and a few churches.

During this time, Richard Peters also began to subdivide his land in north Atlanta under the auspices of his real estate firm. Taking his cue from Peachtree Street, Peters named-platted north/south streets after trees (i.e., Myrtle, Juniper, Apple, etc.). He numbered east/west streets starting with Third Street to the northernmost extent of his property at Eighth Street. In 1887, Peters sold five acres of his remaining holdings to the State for $10,000 and donated another four acres to help establish the original campus of the Georgia School of Technology.

1.3.3 Phase I (1885 - 1922)

Development of the Original Campus Buildings

The first two buildings on the original 8.75-acre Georgia Tech campus were the Academic and Shop buildings (1888). The prominent Atlanta architectural firm of Bruce and Morgan designed the two buildings in the popular Romanesque Revival style, and they were built next to one another on the north side of North Avenue by contractor Angus McGilvray at a cost of $43,250. The Academic Building is now officially known as the Lettie Pate Whitehead Evans Administration Building (No. 35) and is used as academic and administrative offices. However, the building is more popularly referred to as “Tech Tower.” The original Shop Building featured a matching tower and housed metal works, a drawing room, an office, a machine shop, an engine room, a blacksmith shop, an iron foundry, and a brass foundry.

107 Tankersley, Swanson, and Botwick.
The shops were destroyed by a pre-dawn fire on April 21, 1892. F.P. Heifner received the construction contract to erect the new Shop Building, which was completed in late 1892. The two story, red brick facility lacked the striking tower feature of its predecessor and was more modest in its general design. The building functioned in its original capacity from 1888 until January 1896 when the administrators halted commercial activities due to a lack of profitability.\footnote{McMath et al., Engineering the New South: Georgia Tech, 1885-1985, 57–58.} The Shop Building was eventually demolished in 1968. Harrison Square, a campus park with a hard surface of brick and concrete with a small open green space, now occupies the site of the former Georgia Tech shops.\footnote{Dunagan, “The Historic District of the Georgia Institute of Technology,” 1.}

As the early campus developed in its first decade, the designs of new buildings adhered to a predominant, red brick, Romanesque Revival style of architecture. During President Lyman Hall’s tenure between 1896 and 1905, three additional buildings were constructed adjacent to the Administration and Shop buildings. These included the Aaron S. French Textile Building (1899), the Janie Austell Swann Building (1900; also known as the Swann Dormitory) and the Electrical Engineering Building (1901; now the Domenico Pietro Savant Building). In keeping with the late-nineteenth-century period in which the campus was expanded, the buildings were arranged around the Academic Quadrangle (now Tech Tower Lawn) located between North Avenue and the Administration Building, rather than the surrounding public streets. The purpose of the quadrangle, a common feature of American college and university planning during this period, was to imply a “religious character” to the campus setting and establish a “distinct community [with] a separate and distinctive intellectual and social life.” The central lawn of the Georgia Tech quadrangle featured trees planted at regular spacing intervals with diagonal paths dividing the open space into quarters and was enclosed by a wooden picket fence.\footnote{Joshua Word, “Georgia Tech: The Evolution of an American Campus” (Atlanta, Georgia, Georgia Institute of Technology, 2012), 35–36, Georgia Tech Digital Repository, h\url{p://hdl.handle.net/1853/46226}.}

President Hall sought and secured private funding from Pittsburgh industrialist Aaron French to build a textile building, which was then named for its benefactor.\footnote{Dunagan, “The Historic District of the Georgia Institute of Technology,” 4.} The three-story, 32,000 square foot A. French Building (No. 30) was completed in 1898. The architects, Lockwood, Greene, and Company of Boston, Massachusetts, utilized mill construction and very little exterior ornamentation. The factory-like, red-brick structure reflects the straightforward educational philosophy that defined the early days of Georgia Tech.\footnote{Dunn et al., Ramblin’ Wrecks from Georgia Tech: A Centennial History of the Georgia Tech Alumni Association, 18.}
The first two dormitories on campus were temporary frame buildings constructed in June 1896. Four years later, in 1900, the Swann Building (No. 39) was designed by Walter T. Downing as a dormitory. New York businessman James Swann donated $30,000 toward the construction of this Neoclassical Revival style building as a memorial to his wife, Janie Austell Swann.

The next building to be erected on the Georgia Tech campus was the Electrical Engineering Building (No. 38). As with the Swann Building, this facility was also designed by Downing and executed in the Neoclassical Revival style. Completed in 1901, the Electrical Engineering Building was later named the Domenico Pietro Savant Building, after Savant, who retired in 1951 after a long and distinguished career as Georgia Tech’s Dean of Electrical Engineering.

Early Campus Expansion and Continued Improvements

During President Kenneth G. Matheson’s tenure from 1906 to 1922, Georgia Tech celebrated its twenty-fifth anniversary in 1913 and the size of the physical campus grew by 13.5 acres. A total of six buildings were also constructed during this period of early expansion and development. These properties included the Lyman Hall Building, Andrew Carnegie Building, Whitehead Infirmary (now the Lloyd W. Chapin Building), YMCA (now the L.W. Robert Alumni Faculty House), the Power Plant (now the Archibald D. Holland Plant) and the Mechanical Engineering Building (now the John Saylor Coon Building).

The Lyman Hall Building (No. 29A) was erected on the campus in 1905 as Georgia Tech’s first chemistry building. This Romanesque Revival style, two-story building was constructed at a cost of $20,000. It was named in honor of Lyman Hall, the school’s second president, who passed away the same year the building was completed.

In 1906, philanthropist Andrew Carnegie donated $20,000 to Georgia Tech to build the first library on the condition that $2,000 would be appropriated each year thereafter to sustain its operations. Construction on the Andrew Carnegie Building (No. 36) began in November 1906 and the library opened for use in September 1907. An example of the Neoclassical Revival style, this building is stylistically common to the Carnegie Libraries built throughout Georgia and other parts of the United States during the early twentieth century. Use of the library quickly exceeded the size of the existing space, and it was later renovated in 1960 at a cost of $90,000.

117 McMath et al., 292.
118 McMath et al., 102.
The Lloyd W. Chapin Building (No. 25) was originally completed in 1910 as the Joseph Brown Whitehead Memorial Hospital. This two-story red-brick building was designed by Georgia Tech architecture professor Francis P. Smith in a Georgian Revival style. Construction of the hospital was funded by $20,000 in public contributions to honor Joseph B. Whitehead, an early Coca-Cola bottler, and the building was formally dedicated in November 1911.120

The L.W. Robert Alumni Faculty House (No. 3) was built in 1911 as the YMCA building on campus and opened for use the following year in 1912. YMCA programming for Georgia Tech students proliferated under Eugene A. Turner who first arrived at the school in 1907 to serve as the organization’s general secretary on campus. Despite their popularity, YMCA functions were housed in various locations on campus until Matheson and school administrators solicited funding from John D. Rockefeller, who offered in 1910 to donate $50,000 toward the construction of a permanent multi-use, YMCA facility at Georgia Tech. After an additional $25,000 was raised, the building was constructed and opened for use on June 7, 1912. Designed by the firm of Morgan and Dillon, a later incarnation of Bruce and Morgan, this Neoclassical Revival style building functioned as the hub of student life on campus with a social hall, committee rooms, offices, meeting places, post office, lunchroom, game room, barbershop, and auditorium. The third floor originally contained student apartments, whose residents referred to themselves as the “Rockefeller Apartment Roomers.”121

In 1979, the rehabilitated YMCA building was dedicated as the L.W. “Chip” Robert Alumni/Faculty House. Robert was a graduate of Georgia Tech’s Civil Engineering and Textile Engineering programs and a star athlete during his time on campus. Following the dissolution of his previous business partnership, he founded Robert and Company, Architects and Engineers in Atlanta, Georgia in 1917. Robert and Company quickly emerged as a prominent national developer of textile facilities and other large industrial infrastructure projects during the 1920s and 1930s. Chip Robert later served as Assistant Secretary of the Treasury from 1933 to 1936 under the administration of President Franklin Roosevelt. He remained a strong supporter and financial benefactor of Georgia Tech until his death in 1976.122

Along with the construction of the YMCA building, the Georgia Tech administration started taking steps to beautify the campus for the

\begin{thebibliography}{9}
\bibitem{McMath} McMath et al., \textit{Engineering the New South: Georgia Tech, 1885-1985}, 110.
\bibitem{Dunn} Dunn et al., \textit{Ramblin’ Wrecks from Georgia Tech: A Centennial History of the Georgia Tech Alumni Association}, 25.
\end{thebibliography}
enjoyment of students, faculty, and visitors alike. This began with the replacement of the picket fence around the Academic Quadrangle and other wooden fences on campus with privet hedges.123 In March 1911, the Class of 1903 started the tradition of graduating classes giving back to Georgia Tech with the gift of a marble drinking fountain. That same year, the graduating class of 1911 donated two light standards, which still flank the entrance of the old Electrical Building (Dominico Pietro Savant Building). The graduating "Electrical Seniors" of 1912 continued the example set by their immediate predecessors by erecting light standards in front of the Carnegie Library, which remain extant. The graduating Classes of 1914 and 1915 further beautified the campus with the installation of light standards and concrete steps leading from the Academic Building to the Academic Quadrangle.124

The year 1911 also ushered in the start of construction on the Mechanical Engineering Building (now the John Saylor Coon Building, No. 45). Designed in the Renaissance Revival style, this property was the first to be built on the western extension of the original campus boundary. The building was erected in several stages over a multi-year period at a total cost of $178,000. Construction of the original three-story section of the building began in 1911. The second portion of the building, a long, fourteen-bay, two-story wing, was added incrementally between 1919 and 1929 as the need for new space dictated. The third part, which contains the Research Laboratory, was constructed circa 1938 and is located at the rear of the main building.125

Georgia Tech completed its first master planning document in 1912. Prepared by C.W. Leavitt and officially known as the General Campus Plan, the master plan was never fully implemented but it did precipitate a shift away from the quadrangle as the central focus of the school's design and creating a hybrid pastoral/urban campus character in the process. Subsequent buildings and facilities would be sited to face surrounding public streets to take advantage of existing infrastructure at a time of reduced public funding for campus construction and expansion.126

Completion of the Archibald D. Holland Plant (No. 26) in 1914 was a major milestone of President Matheson’s administration and a key infrastructure improvement for the Georgia Tech campus during the early twentieth century.127 In 1917, Georgia Tech purchased an additional seven acres for expansion and received an additional lot donated by the

\begin{itemize}
 \item 123 B. Eugene Griessman, Images & Memories: Georgia Tech, 1885–1985 (Atlanta, Georgia: Georgia Tech Foundation, 1985), 47.
 \item 124 Georgia School of Technology, “History of the Georgia School of Technology,” in The Blueprint (Atlanta, Georgia: Georgia School of Technology, 1920).
 \item 125 Dunagan, “The Historic District of the Georgia Institute of Technology,” 8.
 \item 126 Word, “Georgia Tech: The Evolution of an American Campus,” 37.
 \item 127 Don Alexander, Infrastructure Improvements at Georgia Tech, Teleconference, June 13, 2023.
\end{itemize}
However, the United States’ entry into World War I would curtail additional construction activity on campus over the next few years. To support the war effort, administrators converted Georgia Tech and its campus from educational endeavors to providing instruction for military detachments.

1.3.4 Phase II (1922 – 1944)

Prior to 1940, the Georgia Tech campus was generally bounded by Fourth Street to the north, North Avenue to the south, Williams Street (I-75/85) to the east, and Cherry Street to the west. Many of the academic buildings were clustered around the Administration Building, while Grant Field separated that area from the dormitories, which occupied the eastern edge of the campus. Beyond the early campus core to the north was the newly constructed Rose Bowl Field (1938) on Fifth Street, while a few other associated facilities were situated on the south side of North Avenue, including the Techwood Dormitory, the YMCA building, and the President’s House.

Harold Bush-Brown and Collegiate Gothic Architecture During the Inter-War Period

The architecture of the pre-1940s campus was typical of most educational institutions of the time, containing a core of Romanesque and Classical Revival buildings dating to the school’s inception. The campus also has a collection of buildings constructed from the 1920s onward that are designed in the Collegiate Gothic Style. The campus master plan developed by Warren Laird, Paul Cret, and Francis P. Smith in 1921 introduced the popular institutional style at Georgia Tech, which was modeled after the medieval aesthetic of Oxford and Cambridge in England. The 1921 Laird and Cret master plan also sought to undo the work of Leavitt’s 1912 General Campus Plan by reestablishing the formal spatial arrangements of new campus buildings around quadrangles sited on a north-south axis.

In his thesis about the architectural development of campus, Drury states the Collegiate Gothic style was used to present the image of the school as an “old-world research institute.” Many of the Collegiate Gothic buildings on the Georgia Tech campus were built in the 1920s and 1930s—the latter of which were designed by the faculty firm of Bush-Brown and Gailey. As befitting the revival style of architecture, the campus landscape included sidewalks constructed of brick pavers in a herringbone bond, the

129 Word, 37.
use of privet hedges in lieu of fencing, and groupings of evergreen plantings.130

Harold Bush-Brown came to Georgia Tech in 1922 after serving in the First World War and working in various architectural firms in New York and Boston. A graduate of Harvard’s Architecture Program, Bush-Brown attained the Directorship of the Architecture program at Georgia Tech where he spent most of his career. While in this position, he teamed with fellow faculty member J.H. Gailey to form an architectural practice that provided design services to the Institute.131

Together the men were responsible for designing many of the early Collegiate Gothic style structures on campus during the inter-war years. These buildings include the Emerson Chemical Laboratory (No. 29B) in 1925; Julius Brown Residence Hall (No. 7) in 1925; Nathaniel E. Harris Residence Hall (No. 11) in 1926; Brittain Dining Hall (No. 12) in 1928; Josiah Cloudman Residence Hall (No. 13) in 1931; Clark Howell Residence Hall (No. 10) in 1939; and George W. Harrison Residence Hall (No. 14) in 1939. Meanwhile, Robert and Company designed the D.M. Smith (Old Physics) Building (No. 24), which was completed in 1923.

The Great Depression

While funding for capital projects was generally limited during the early to mid-1930s due to the depressed economy, several buildings were constructed on campus during this period. In 1930, Georgia Tech received the Guggenheim award of $300,000, the largest single donation to the Institute up to that date. These funds were used to create the School of Aeronautics (later renamed the School of Aerospace Engineering) and the Daniel F. Guggenheim Building (No. 40) was constructed that same year to house this program.132 Off campus construction began on the Techwood Homes complex in 1934 on a cleared 24.8-acre site in the old Techwood Flats neighborhood located just south of North Avenue. This project, which was designed by Burge and Stevens, was the first federally subsidized public housing project in the United States when it opened in 1935. In addition to the forty-three individual housing blocks, the complex also included the Techwood Dormitory. Georgia Tech leased the dormitory for student housing from 1935 to 1956, when the Institute eventually purchased the building. Much of Techwood Homes, including

\begin{itemize}
 \item 130 Georgia School of Technology, "The Physics Building (Photograph),” in The Blueprint (Atlanta, Georgia: Georgia School of Technology, 1925).
\end{itemize}
the dormitory, was later demolished in 1996 in preparation for the Olympic Games.133

As the Great Depression wore on, labor and funds from President Roosevelt’s New Deal programs became available and the Civilian Conservation Corps (CCC) and Public Works Administration (PWA) provided labor and supplemental funding for campus building projects. In addition to the George W. Harrison Jr. and Clark Howell dormitories and Techwood Homes referenced above, these included 215 Bobby Dodd Way (originally the Ceramic Engineering Building and more recently the Navy ROTC Armory) in 1934; third addition to the Lyman Hall Building in 1936; Engineering Science and Mechanics Building (No. 41) in 1938; Hinman Highbay Building (No. 51) in 1939; and the Civil Engineering Building (No. 58) in 1939.

Arrival of Paul M. Heffernan and the Shift Toward Modern Design

Harold Bush-Brown was responsible for bringing Paul M. Heffernan to the school in the late 1930s. Heffernan came with many accomplishments and brought much “prestige” to the Architecture Program at Georgia Tech.134 Originally from Iowa, Heffernan received his undergraduate degree in Architectural Engineering from Iowa State. He later went on to Harvard’s Graduate School of Design where he received his Master of Architecture and won the Paris Prize. He then enrolled at the Ecole Nationale Superieure des Beaux-Arts in Paris where he spent the next three years of study (1935-1938). Upon hearing of Heffernan’s return to the United States, Bush-Brown offered Heffernan the position of head of senior design at Georgia Tech, which Heffernan accepted. In addition to his academic responsibilities, Heffernan joined Bush-Brown and Gailey as part of the already established architecture firm made up entirely of Georgia Tech faculty.

While the classically inspired Beaux Arts had been a dominant force in the architecture of colleges and universities across the country for many years, its influence began to wane in the 1930s with the rise of the modernist movement inspired by the German Bauhaus. This architectural evolution grew more pronounced at Georgia Tech with the arrival of Heffernan, as evidenced by the 1939 design of the Hinman Highbay Building (No. 51). The first building constructed on campus with Heffernan as lead designer, the Hinman Highbay marked the transition from the predominant Collegiate Gothic style at Georgia Tech toward the functionalism of the International Style as expressed in the vaulted lab space of the visually prominent roofline and horizontal band of windows extending the length of the building’s facade. Heffernan also designed the 1951 “Hinman Connector” (No. 51A) building, which connected the

133 Drury, “The Architectural Development of Georgia Tech,” 170; Holliman, “Techwood Homes.”
Hinman Highbay Building to the formerly free-standing Calculator Building (No. 51B). The Georgia Board of Regents and the Public Works Administration provided joint funding for construction of the new building.135

World War II and the 1944 Master Site Plans

In 1940, the Georgia Tech campus was still very small. Except for some major athletic fields on the north side of campus, it was not much larger than it had been in the early 1900s. By the mid-1930s, the campus had only grown west to Cherry Street and north to Third Street.136

During the war years, construction on campus slowed and enrollment declined as many young men left for service overseas. The Department of Architecture took this time to develop a series of Master Site Plans for the Institute. In 1944, six studies (M-1 through M-6) were created with the first iteration of the plan being adopted in October of that year. This plan called for the creation of a new academic core around an open green space and the reorientation of the campus’ main entrance. Based on the M-6 Master Plan, growth would be in a northwesterly direction, and it was suggested that the campus should triple in size. For the first time, the automobile became an important consideration in land-use planning on campus. The newly created plan called for 750 new parking spaces to be sited near the main academic buildings. The ambitious construction program also called for a new auditorium, library, classroom building, textile building, architecture building, faculty housing, and naval and army buildings.

An announcement of Georgia Tech’s development plans and the unveiling of the design renderings for President Van Leer attracted the attention of the press in 1944. Commenting on Bush-Brown, Gailey and Heffernan’s proposed designs and the obvious shift towards a modern aesthetic, one reporter commented that “the traditional styling of the older campus buildings gives way in the renderings of the new buildings to a modern, functional type of architecture featuring ribbon windows and simple brick exteriors.” The firm of Bush-Brown, Gailey and Heffernan would play an important role in designing many of the buildings slated for construction during this planning period.137

The following buildings were also constructed on campus during President Brittain’s tenure: the Ceramic Engineering Building/Navy ROTC

136 Tankersley, Swanson, and Botwick, “The Georgia Institute of Technology Archaeological Site Probability Update, Fulton County, Georgia.”

137 Keck Engineering Associates, “Formula for Growth” (Atlanta, Georgia: Georgia Institute of Technology, 1962), Inventory of the Georgia Tech Foundation Records, 1932-1981, Archives and Special Collections, Library, Georgia Institute of Technology Repository.
Armory (No. 59) in 1924; Bobby Dodd Stadium at Grant Field (No. 17) in 1925; Army Office (No. 23A) in 1927; 220 Bobby Dodd Way/Army Armory (No. 23B) in 1927; Mechanical Engineering Research Building (No. 48) in 1941; and J.L. Daniel Laboratory (No. 22) in 1942. Georgia Tech also currently owns several buildings that were constructed during this time but were not acquired by the Institute until much later. These buildings, not associated with the tenure of President Briarain, include the Daniel C. O’Keefe Building (No. 33), O’Keefe Gym (No. 33A), and the former Custodial Services Building (No. 33B), constructed in 1924 and acquired in 1979. Other buildings include the Paul H. Heffernan House (No. 720) constructed in 1927 and acquired in 1995; and the J. Allen Couch Building (No. 115) constructed in 1935 and acquired in 1975.

1.3.5 Phase III (1944–1956)

When Colonel Van Leer became President in 1944, the campus itself was valued at $5 million, with nearly $3.5 million of the total worth in building assets. Wartime rationing of steel, aluminum, and other strategic metals had curtailed campus construction during the war. As veterans began to return from the War and enrollment increased, implementation of the recommendations set forth in the master plans became a priority. One of the first acts of President Van Leer’s administration was to acquire additional land for the Georgia Tech campus, more than doubling its size from 51 acres to 128 acres.

Post-World War II Campus Development

Refinements of the 1944 M-6 campus plan continued over the course of 1946 and 1947. Recognizing several shortcomings in the initial designs and encouraged by President Van Leer to refine their ideas, the Architecture Department continued its work revising the plans. Subsequent M-7, M-8 and M-9 plans were completed over the next two years, with the Institute’s boundaries continuing to expand. The M-8 and M-9 development plans were the first plans to recognize the fixed eastern boundary of the campus established by the proposed downtown expressway that was presented in the 1946 Highway and Transportation Plan for Atlanta, Georgia, which was more commonly referred to as the Lochner Report after its author, the H.W. Lochner Company of Chicago, Illinois.

Construction in the late 1940s primarily focused on housing. In 1947, Bush-Brown, Gailey, and Heffernan began by adding to the already

139 McMath et al., Engineering the New South: Georgia Tech, 1885-1985, 247.
140 Keck Engineering Associates, “Formula for Growth.”
established student housing along the eastern edge of campus, which was referred to as Area 1. Several new dormitories, including Smith (No. 6), Towers (No. 15), and Glenn (No. 16) extended the existing dormitory complex around Brittain Dining Hall to the north and south, creating a central quadrangle between the new dorms and strong axial pedestrian circulation routes. The buildings were designed using the same Collegiate Gothic stylistic vocabulary as the pre-war dormitories around the Dining Hall. Each of the new residential buildings was a three-story walk-up dormitory with projecting stair towers, gable roof, horizontal bands of stone and lancet arched banding at each entrance. These dormitory buildings were financed with self-liquidating bonds financed by the occupants’ rent, which totaled approximately $15 a month.

The Flippen D. Burge and Callaway Apartments (Nos. 1 and 70; razed) were both completed in 1947. The two buildings represented a sharp break from the traditional Collegiate Gothic aesthetic presented by Smith, Towers, and Glenn dormitories. Stevens and Wilkinson designed the apartments that Progressive Architecture magazine described as European Modernist in style. This local firm, which was nationally recognized for their modern approach to design, was originally formed in 1919 as Burge and Stevens Architects, by Flippen Burge and Preston Stevens Sr. Both graduates of Georgia Tech, these men designed such landmarks as Georgia Baptist Hospital, First Baptist Church of Atlanta, the Capital City Club, numerous residences, and the first reinforced concrete office building in Atlanta at 101 Marietta Street. Following the death of Burge in 1946, James R. Wilkinson became a partner, and the firm was renamed Stevens and Wilkinson. Over the ensuing years, Stevens and Wilkinson became nationally known for their innovative and modern designs, including such buildings as the Continuing Education Center at the University of Georgia, Rich’s Store for Men, and the E. Rivers School.141

The combined 220 units of student and faculty housing cost a total of $4 million to construct. An article in the September 1948 edition of the Architectural Forum compared the Callaway Apartments with Sweden’s Cooperatives in noting the new married student dormitories featured landscaped grounds, individual balconies, play areas and a supervised nursery school. As part of a student research project, a unique approach to the heating system was implemented with one-half of the units being heated with radiant floor panels while the other half used radiators. An interesting quote by J.H. Gailey in the article revealed the views of Georgia Tech’s in-house architects regarding the failures of the Collegiate Gothic as a style for modern residential and educational facilities in the mid-to-late twentieth century:

“It long has been the feeling that Gothic doesn’t suit a modern classroom

building or for that matter, an apartment building. Both classrooms and apartments need more adequate lighting, natural and artificial, than is possible in Gothic buildings. Modern heating and possibly air conditioning don’t fit either.”

While most of early capital improvements focused on new student housing on campus, many Georgia Tech alumni believed President Van Leer would also benefit from the use of an official residence. Former President Brittain had lived in a modest wood-frame house on the site of the existing North Avenue parking deck, located between the Alumni/Faculty House and the Burge Apartments; however, President Van Leer lived in offsite rented quarters. In 1949, the current President’s House (No. 71) was constructed with partial financing provided by textile magnate Fuller E. Callaway, Jr. via an anonymous gift of $100,000. The Atlanta firm of Toombs and Creighton were listed as the official architects of record for the Neoclassical Revival style residence; however, Ella Van Leer, President Van Leer’s wife, is commonly credited as the principal designer of the building and provided the conceptual plans to the architects during the initial design stage. Despite these new buildings, the Georgia Tech campus remained in dire need of additional modern facilities. A 1949 article in the Atlanta Constitution observed that although the Institute had recently completed $6 million worth of new construction, “the South’s largest Institute of Technology is still partly housed in rickety ramshackle buildings.”

Heffernan’s Modern Academic Village: The Hightower Building, Bradley Building, Architecture (East) Building, and Price Gilbert Library

In addition to housing, several academic buildings were also constructed during President Van Leer’s tenure at Georgia Tech. One of the first was the Harrison Hightower Textile Engineering Building (No. 44; razed), which was designed to provide the Institute with a state-of-the-art facility for the academic training of Georgia’s textile engineering students. Partially funded with $500,000 secured by William Harrison Hightower of the Textile Education Foundation and supplemented by state appropriations, the building could accommodate 400 occupants and provided facilities for instruction and research. The educational facility also incorporated a 300-seat auditorium, a three-story classroom unit and a two-story mill area.

Executed by Bush-Brown, Gailey, and Heffernan, the Hightower Building

143 Dunn et al., Ramblin’ Wrecks from Georgia Tech: A Centennial History of the Georgia Tech Alumni Association, 64.
was purely modern in its design. The different building functions were expressed on the exterior through a juxtaposition of volume and materials. The classroom unit was identified by the south-facing wall of glass that provided natural light to the interior. A stark masonry volume with little or no fenestration contained the auditorium while the mill was expressed with an industrial feel characterized by bands of glass block windows. When it opened in October 1949, the Hightower Building provided the South with a world-class textile facility that trained many of the state and regions’ industry leaders prior to its eventual demolition in 2002.

The building program at Georgia Tech that began in the late 1940s continued into the next decade with the construction of several new buildings, each advancing the trend towards a modern aesthetic for the campus. The Bradley Building (No. 74), a cafeteria and dining hall nicknamed “the Robbery,” was constructed in 1951 adjacent to the Academic Building in the oldest section of campus. Despite its proximity to the classically inspired traditional buildings, Bush-Brown, Heffernan and Gailey chose to ignore its traditional context and design a functionally modern building featuring large areas of glass and solid masonry walls, a flat roof, and a cantilevered metal canopy covering the main entrance.

The Architecture (East) Building (No. 76) was completed a year later in 1952. Prior to this time, the Architecture Department was housed in several older residential structures scattered throughout campus. Described as Heffernan’s “masterpiece,” this building is unique in that it was one of the first buildings designed specifically for the study of Architecture by the architects who would ultimately become its inhabitants and users. The building encompassed approximately 61,000 square feet and cost $1 million to construct. A combination of state funds, bonds, and private alumni support provided funding for development. In keeping with the principles of the master plan, the building enjoyed a spacious site, providing ample light and air as well as room for expansion.

Like Hightower, the Architecture Building also boasted a large auditorium. Other spaces included an exhibition room, conference room, director’s office, a captain’s bridge, as well as extensive studio areas, an industrial design shop and instruction rooms. The north- and south-facing glazed walls were protected from direct sunlight by continuous concrete screens that also shielded the windows from rain and served as platforms for cleaning and maintenance of the exterior. The library was housed in the elevated bridge connecting the north and south wings. Features that

146 McMath et al., 278.
147 Craig, Georgia Tech: Campus Architecture, 53–54.
were included in the original design but were not implemented due to cost include a relief carving in the marble panel to the left of the main entrance, a piece of sculpture that was to be pinned to the building, and an elevator. A large parking lot was constructed along with the building on the west side of the Architecture Building. This parking lot was constructed to accommodate the increased presence of automobiles on the campus in accordance with the 1947 campus master plan efforts.

Heffernan’s Price Gilbert Library (No. 77) was constructed in 1953 on one of the most commanding sites on the Georgia Tech campus. Simple in form, the design of the building takes advantage of the natural light through the glazed north wall, which rises four stories above grade. On the interior, open stacks and natural light provide uninterrupted and airy reading areas. The expansive masonry west wall protects the collections from the western sun and a circular glazed wing with a copper roof defines the main entrance.

Local landscape architect Edward “Ed” Daugherty (born 1926) prepared the landscape plans for the library in 1963 and historic photographs indicate that these plans were executed at that time. In 1968, an adjacent nine-story addition, named Crosland Tower after Georgia Tech’s longtime librarian, Dorothy Crosland, was built to alleviate crowded conditions caused by the Institute’s rapidly growing collections. Later in 1976, an extensive landscaping plan was implemented, which included the installation of Price Gilbert Fountain, designed by Paul Vanderhorst, and a bronze memorial plaque to Mr. Gilbert near the main entrance of the library.

In the mid-1950s, a long-standing argument re-emerged that questioned the Board of Regents policy of having “in-house” architectural departments design campus structures. At the forefront of the argument was local architect, attorney, and Georgia Tech graduate, Thomas Bradbury, who took exception to the exclusivity of the arrangement. One of the main issues was the low fee being charged by Bush-Brown, Gailey, and Heffernan, which was below that charged by outside firms. This created a perceived conflict of interest and negated competition. After extensive lobbying by Bradbury and others, Georgia legislators pressured the Georgia Board of Regents into discontinuing its practice of hiring in-house architects for campus design. Without work Bush-Brown, Gailey, and Heffernan discontinued their practice, but did work in consultation on at least one other project.

Other buildings constructed on campus during President Van Leer’s tenure include the Calculator Building (No. 51B) in 1947; Pumping Station (No. 62) in 1948; Facilities Garage/Warehouse (No. 67) in 1948; Marion L. Brittain “T” Room Addition (No. 72) in 1949; Thomas P. Hinman Building/Hinman Connector (No. 51A) in 1951; and the Rich Building (No. 51C) in 1955.

1.3.6 Phase IV (1957–1973)

During President Edwin D. Harrison’s twelve-year tenure as president, federally assisted urban renewal land acquisition and a massive building development program were initiated at the Institute. These multi-year projects resulted in a doubling of the campus size and the construction of several new facilities, including classrooms, a residence hall, laboratory, a nuclear reactor, and other buildings.

Alexander Memorial Coliseum and the Skiles Classroom Building

Completed at the start of President Harrison’s administration in 1957, the Alexander Memorial Coliseum was originally built as a tribute to one of Georgia Tech’s most beloved football coaches, William “Coach Alex” Alexander. Following his retirement in 1945, Coach Alex began planning for the development of a large field house that could hold thousands of spectators for basketball games, concerts, and theatrical productions. After securing preliminary plans, an architectural model, and a construction cost estimate of $2.5 million, Coach Alex died from a heart attack in April 1950.

Despite his death, Georgia Tech and its alumni pushed forward with raising the necessary funds to construct the Coliseum. Richard L. Aeck worked in consultation with Bush-Brown, Gailey, and Heffernan to complete the project. A native of Iowa, Aeck had graduated from Georgia Tech in 1929 with a degree in architecture. Specializing in educational projects, he formed his own practice, Aeck and Associates, and soon developed a reputation for his contemporary and innovative designs. In the 1960s, Aeck was inducted into the American Institute of Architects’ College of Fellows and continued to work on such projects as the Lockheed Research Center, the U.S. Army Signal School, and a new Dining Pavilion at Callaway Gardens. Aeck and Associates merged with Lord and Sargent Architecture in 1989 to create Lord, Aeck, and Sargent Architects, which continues to practice in several disciplines including education, science, historic preservation, arts and culture, housing, and mixed use.

Chosen for his innovative solutions to stadium designs such as the expansion of the west stands at Grant Field in 1947 and the Grady High School Football stadium of 1948, Aeck elected to pursue a controversial and truly modern design for the Memorial Coliseum. Its circular form and innovative steel construction provoked talks of UFOs and space men in local papers. The Stadium included a south wing that housed a gymnasium and the WGST-AM radio station studio, which began operations in 1968. It is the studio portion of the building that exemplifies the work of Bush-Brown, Gailey, and Heffernan. The low horizontal massing and bands of glazing were suggestive of the earlier Hinman Research Laboratory. The Alexander Memorial Coliseum facility was extensively renovated, expanded, and renamed the Hank McCamish Pavilion (No. 73) in 2012 at a cost of $50 million.151

A second significant building constructed early in President Harrison’s tenure was the Skiles Classroom Building (No. 2) that was designed by the previously mentioned, A. Thomas Bradbury (1902-1992). Bradbury was a Georgia native who graduated from Georgia Tech’s architecture program in 1923. He established his own firm in 1943 and is most noted for his work for the State of Georgia during the 1950s and 1960s. During that period, Bradbury supervised the renovation of the Georgia State Capitol and designed several administrative buildings in the Capitol complex, including the Trinity-Washington Building as well as those housing the departments of agriculture, human resources, law, and transportation. In addition, he designed the Georgia Archives Building (demolished in 2017), the Georgia Mental Health Institute on Briarcliff Road, and the Governor’s Mansion on West Paces Ferry Road.152

Bradbury tapped Ed Daugherty to design the landscape plans for the Skiles Classroom Building (No. 2). Daugherty had previously created a modernist landscape plan for Price Gilbert Library in 1953 and would go on to design many more landscapes commissions on the Georgia Tech campus from the 1950s through the 1990s. A few of his most notable projects at the Institute include the Student Center Plaza, the Men’s Dormitory and the design for what is now referred to as the Tech Tower Lawn. A native of Summerville, South Carolina, Daugherty originally studied architecture at Georgia Tech before switching his focus to landscape architecture at the University of Georgia and the Harvard Graduate School of Design. He became a Fellow of the American Society of Landscape Architects (ASLA) in 1971 and received the ALSA Medal, the organization’s highest honor, in 2010.153

152 Craig, “A. Thomas Bradbury (1902-1992).”
The site for the $2.3 million Skiles Classroom Building was located just south of the library. As originally designed, the building contained 68 classrooms, 110 offices and 23 special-purpose rooms. In keeping with the established approach to design on campus, Bradbury embraced the modernist precedent first set by Bush-Brown, Gailey, and Heffernan. The classroom building had a rectangular footprint with a central courtyard, glazed north and south elevations and stark masonry walls punched with fenestration on the east and west sides. Bradbury borrowed from earlier structures the use of concrete screens to shade the windows from sunlight and ceramic tiles on the exterior. Many of the offices looked onto the interior landscaped courtyard, which had a circulation corridor and stairs at one end with a central plaza composed of concrete, brick pavers and trees planted on a grid. Much of this courtyard remains in its original configuration.

Extensive Campus Development in the 1960s

By the 1960s, enrollment had greatly increased, resulting in crowding and congestion of both people and automobiles on campus. The 1962 campus planning report, Formula for Growth, prepared by the Atlanta firm, Wylly Keck Engineering Associates, expressed a pressing need for new faculty and administrative offices, classrooms, auditoriums, laboratories, study areas, research project spaces, and parking. The planning report mentioned the lack of an adequate focal point for student activity or leisure time on the existing campus and recommended large-scale land acquisition of the mixed residential and commercial area west of Hemphill Avenue via federally assisted urban renewal.154

Between 1959 and 1968, several new academic structures were completed on campus as part of the expansion and development program, including the Cherry Emerson Building (No. 66) in 1959; the Blake Van Leer Building (No. 85) in 1961; the Bunger-Henry Building (No. 86) in 1964; Joseph H. Howey Physics Building (No. 81) in 1967; Paul Weber Space Science and Technology/SST1 Building (No. 84) in 1967; Paul Weber Space Science and Technology/SST3 Building (No. 98) in 1967; Cherry Emerson Addition (No. 66A) in 1968; Dorothy M. Crosland Tower (No. 100) in 1968; and the Montgomery-Knight Aerospace Engineering/SST2 Building (No. 101) in 1968. The second Shop Building, which was built in 1892 and was part of the original core campus, was also demolished during this period and the area cleared for greenspace. Although these new facilities continued to express a modern aesthetic, individuality of design, site placement, and use of materials became apparent as a byproduct of the Institute’s administration no longer relying on a single architect or firm for design services. Several prominent local

Atlanta firms with strong connections to Georgia Tech, such as Robert and Company, Edwards and Portman, John W. Cherry, and Finch, Alexander, Barnes, Rothschild, and Paschal (FABRAP) would contribute to the physical character of the campus during this unprecedented period of development.

Two of these academic buildings, the Van Leer and Bunger-Henry buildings, as well as the Jesse W. Mason Civil Engineering Building (No. 111), which was completed in 1969, are representative of a transition from the functionalism of the early International Style into the more revivalist Formalism style of the late modern architecture movement popularized by such high-profile architects as Edward Durrell Stone. As the name suggests, Formalism emphasizes form as expressed in the visual relationship between a building’s parts and its entirety. Shape is the focus of attention with lines and rigid geometric shapes predominating.\footnote{Marcus Whiffen, American Architecture Since 1780: A Guide to the Styles, 3rd ed. (Cambridge, Massachusetts: MIT Press, 1992).}

Designed by Robert and Company and completed in 1961, the Van Leer Building represents this transition with a reduction of horizontal elements to more vertical elements evident in the punched windows as well as unique formal expressions such as the concrete screen. This verticality is characterized in the Bunger-Henry building in the formalist capitals that flow into the entablature above and the verticality of the concrete fins that shade the windows. The characteristic verticality of this style is evident in the five bays of tall, grouped windows of the Mason Building and enhanced by the ground-level pilo\(s\) (or piers).

Completed in 1963, the Frank H. Neely Research Center was the largest construction project at Georgia Tech at the time and only the second nuclear research reactor sited on a university campus (the other was located at the Massachusetts Institute of Technology). Georgia Tech awarded Robert and Company the commission to design the Research Center, which was built at a cost of $4.5 million with funding provided by the state, National Science Foundation, and the Atomic Energy Commission. The heavy-water reactor was named for alumnus and businessman, Frank H. Neely, who organized the Georgia Nuclear Advisory Commission and was chairman of the organization at the time of construction. Due to mounting maintenance issues and costs of operation, combined with safety concerns prior to the 1996 Olympics, the administration began to fully decommission the reactor in 1997 and the building was eventually demolished in 2015.\footnote{Nolan E. Hertel, “History of the Georgia Tech Research Reactor” (PowerPoint, Colloquium on History and Contributions of Nuclear Engineering at Georgia Tech, Atlanta, Georgia, November 2, 2012), https://web.archive.org/web/20160321112426/http://www.nremp.gatech.edu/files/ne50/presentations/02D2_NE50_Hertel.pdf.}
In addition to the academic buildings, several dormitories were also built during the early 1960s, with many of them grouped on the east edge of the campus and completed in 1961. These facilities included: the Floyd Field Residence Hall (No. 90); Kenneth G. Matheson Residence Hall (No. 91); William G. Perry Residence Hall (No. 92); Major John Hanson Residence Hall (No. 93); and the Isaac S. Hopkins Residence Hall (No. 94). Administrators selected William Elliott Dunwody, Jr., a 1914 graduate of Georgia Tech’s architecture program, to design this student housing. Dunwody was a member of the Georgia Board of Regents and the architect for several buildings at other University System institutions, including Wesleyan College, Mercer College, University of Georgia, and Georgia Tech.157

Urban Renewal and West Campus Expansion

In addition to extensive facilities development, a significant expansion of the existing campus area was the other main goal of President Harrison’s administration during the 1960s. In 1963, Georgia Tech appointed Clyde D. Robbins as the campus planner and hired David O. Savini as campus architect to help guide the urban renewal and campus planning process. That same year, the Institute formally applied to the Housing and Home Finance Agency (HHFA) for urban renewal funding with the Atlanta Housing Authority serving as the governmental intermediary. The following year, Georgia Tech contracted the firm Perkins and Will to develop the master plan that would guide the federal urban program, which was executed over two phases under the R-85 (1963) and R-111 (1965) plans.158

The proposed campus expansion targeted the Home Park neighborhood to the north and west of Hemphill Avenue. As older residents died and others moved to the suburbs, students had begun moving into the area to take advantage of the rising number of rental properties. The master plan produced by Perkins and Will in 1965 stressed the need for the development of additional student housing on acquired land with enough space to prevent the spread of fire and relief of chronic traffic congestion on campus through the construction of new, separated roadways, parking lots, and connective pathways.159

158 McMath et al., Engineering the New South: Georgia Tech, 1885-1985, 339–40; Georgia Institute of Technology, “Chronological History of Significant Events, Georgia Tech Urban Renewal Project I” (Atlanta, Georgia: Georgia Institute of Technology, 1965), Inventory of the Urban Renewal Projects Records, 1941-1974, Archives and Special Collections, Library, Georgia Institute of Technology Repository.
Between 1964 and 1971, the Institute, using federal urban renewal funding, acquired large portions of Home Park, westward to Northside Drive and south of Eighth Street, that increased the size of the Georgia Tech campus from 153 acres to 255 acres. The acquired urban renewal land was laid out with a newly configured streets network designed to facilitate automobile flow. Ferst Drive incorporated parts of Ponder Avenue, Clayton Street, and Sixth Street, and most of the streets inside this area were removed to make way for new construction. The curvilinear Tech Parkway was laid out immediately to the southwest of Ferst Drive and was designed with a wide, 120-foot right-of-way and to accommodate traffic speeds of 50 miles per hour. The only part of Home Park retained for residential use in the modern campus was in the northwest corner of the old neighborhood bounded by Northside Drive and Eighth, Tenth, and State streets.¹⁶⁰

At the time of President Harrison’s departure in 1968, the Georgia Tech campus contained 61 buildings managed by the Institute. Under President Arthur Hansen’s brief tenure from 1969 to 1971, a total of 12 new buildings were completed on the campus, including the Harry L. Baker Building (No. 99), by the Atlanta firm Toombs, Amisano, and Wells, along with the FABRAP-designed John Lewis (originally Fred B. Wenn) Student Center (No. 104), and L.H. Swayze’s Jesse W. Mason Civil Engineering Building (No. 111) in 1969. Several new dormitories, clustered along McMillan Street and Turner Place in the west campus expansion area, were also completed in 1969 and include: the Robert C. Commander Commons (No. 105); Herman K. Fulmer Residence Hall (No. 106), Georgia Tech’s first all-female dormitory; the Ralph A. Hefner Residence Hall (No. 107); Arthur H. Armstrong Residence Hall (No. 108); Hugh H. Caldwell Residence Hall (No. 109); Edwin H. Folk Residence Hall (No. 110). The firms Bull and Kenney and Wise, Simpson, Aiken and Associates designed these dormitory facilities, which share similar low-rise forms and functional Modernist red brick exteriors. Other notable additions to the campus during this period consisted of the Gilbert Hillhouse Boggs Chemistry Building (No. 103) in 1970 and the Penny and Roe Stamps Student Center Commons (demolished) and the Boggs Storage Facility (No. 103A), which both opened in 1971.

The national economic downturn in the early 1970s, combined with a corresponding decline in funding and enrollment, generally stymied the ambitious development plans that had been planned during more robust times in the 1960s. Following a spate of construction early in President Joseph M. Pettit’s tenure that included the Y. Frank Freeman Jr. Residence Hall (No. 117) and Harold E. Montag Residence Hall (No. 118) in 1972, and the Louise M. Fitten Residence Hall (No. 119) and the Rich Computer Center (No. 51D) in 1973, most development on campus came to a halt.

until the close of the decade. Conversion of the campus to a chilled water loop distribution system, which was first proposed in a 1968 update to the campus master plan, began in 1973 under the direction of the engineering firm Newcomb and Boyd. In 1974, Georgia Tech purchased the J. Allen Couch school (originally known as the Haygood-State Street School). The former school's attendant athletic fields (located behind Fitten and Montag dormitories in the west campus expansion area) remained under the ownership of the City of Atlanta but are maintained and programmed by the Institute. Formally called Couch Park, Georgia Tech students later nicknamed the clearing “Burger Bowl Field” after a former Burger King restaurant that was once located across the street.

1.3.7 Phase V (1974–1994)

Completion of the Cooper Carry and Associates-designed Architecture West Building (No. 75) in 1980 ushered in a new period of campus construction over the remainder of the decade that addressed space needs in every programmatic area, including academics, housing, and recreation. Notable extant projects built during this period include: the Arthur B. Edge Intercollegiate Athletic Center (No. 18) in 1982; Instructional Center (No. 55) in 1983; the 430 Tenth Street North and South buildings (No. 61 and No. 61A), the Irene and George Woodruff Residence Hall (No. 116), and the Centennial Research Building (No. 790) in 1984; the Bill Moore Tennis Center in 1985 (demolished in 2012 for construction of the Ken Byers Tennis Complex); and the Rich Chiller Plant (No. 51F) and Southern Regional Education Board (No. 125) in 1986.

Major infrastructure improvements to the Georgia Tech campus also occurred over the course of the 1980s, most notably the digital mapping of existing and expanded utility systems and inclusion of these features as part of the campus master planning process. In 1983, design work began on expanding the Bobby Dodd Tunnel to accommodate the widening of the I-75/85 Downtown Connector. As part of the project, a new closed access television (CATV) system and remote-controlled gates were installed in the tunnel to improve monitoring and security by campus police. A second major project began in 1985 and involved the installation of new fiber optic cable that had been donated by AT&T to support expanded electronic networking for 18 buildings located throughout the campus.

Additionally, the Institute currently owns other buildings that were constructed during this time, but were not acquired until later dates, such as: the Business Services building (No. 164) constructed in 1975 and acquired in 2001; the 845 Marietta Street N.W. (No. 156) building, which was constructed in 1980 and acquired in 2000; the Human Resources

161 Alexander, Infrastructure Improvements at Georgia Tech.
162 Alexander.
Building (No. 142), 811 Marietta Street N.W. (No. 138), and the 831 Marietta Street N.W. (No. 184) buildings that were all constructed in 1984 and acquired in 1995; the Research Administration Building (No. 155) constructed in 1986 and acquired in 2000; and 781 Marietta Street N.W (No. 137), which was built in 1986 and acquired by Georgia Tech in 1992.

A substantial portion of campus planning and development during John P. Crecine’s tenure as president of Georgia Tech, from 1987 until 1994, involved preparation for the Institute’s hosting of the Olympic Village and aquatic sports during the 1996 Centennial Olympic Games in Atlanta. The above-mentioned master plan prepared by Sasaki Associates in 1991, sought to guide the projected $2 million in development for the games and establish a better integrated “24-hour, mixed-use environment” on the campus that would prepare Georgia Tech for the twenty-first century.163

Among the projects executed during the President Crecine’s administration in the late 1980s and early 1990s were: the James K. Luck Jr. Building (No. 73A), Griffin Track Stands (No. 80A), and William C. Wardlaw Jr. Center (No. 47) in 1987; the Joseph M. Pettit Microelectronics Research Building (No. 95), which was built in 1988; the Computing Building (No. 50) in 1989; the Fuller R. Callaway Jr. Manufacturing Research Center (No. 126) in 1990; the Bill Moore Student Success Center (No. 31), Robert Ferst Center of the Arts (No. 124), and the Graduate (No. 52) and Undergraduate (No. 64) living centers, which were all completed in 1992. The independent Institute of Paper Science and Technology (IPST) erected the Paper Tricentennial Building (No. 129) on campus in 1992. Georgia Tech later acquired IPST (renamed the Renewable Bioproducts Institute in 2014) and the building in 2003.

1.3.8 Phase VI (1994–2023)

G. Wayne Clough served as president of Georgia Tech from 1994 until 2008. During President Clough’s tenure, the Georgia Tech campus underwent a dramatic expansion that eclipsed the growth of the 1960s, with over $900 million spent on expanding and improving the campus. Early in President Clough’s tenure, Georgia Tech served as the Olympic Village for the 1996 Olympic Games in Atlanta. The Village was open from July 6 to August 7, 1996. Over that time, it had a daily population of nearly 30,000 people, and was home to more than 14,000 athletes, coaches, trainers, and officials from 197 national Olympic committees, almost 10,000 employees/volunteers, and hundreds of media representatives. As part of the effort to transform the campus into the Olympic Village, Techwood Homes was demolished and replaced with mixed-income housing and dormitories to house Olympic athletes.

Another significant development during President Clough’s administration was the expansion of the campus east of the Downtown Connector for the first time since the construction of the interstate system in the mid-1950s. Begun in 2000 and largely completed in 2003, Technology Square was constructed over previously vacant surface parking lots and the highway. It is located just east of the main campus and the I-75/85 Downtown Connector is bridged by the Fifth Street Bridge. This development contributed greatly to Midtown Atlanta’s revitalization in the early twenty-first century. Original occupants of Tech Square were the Georgia Tech’s Distance Learning and Professional Education units and College of Management, among other professional and retail entities. In July 2008 the Academy of Medicine, located east of Tech Square, was transferred to the Georgia Tech Foundation. The Georgia Tech Foundation in turn transferred the property to Georgia Tech in June 2010.

Signature building projects completed during the late 1990s and early 2000s included: the Manufacturing Related Disciplines Complex (No. 135) in 1995; the Georgia Tech Aquatic Center renovation (No. 140) in 1995; Technology Square Research Building (No. 175) in 2001; U.A. Whitaker Biomedical Engineering Complex (No. 165) in 2002; Joseph B. Whitehead Student Health Center (No. 177) in 2003; Campus Recreation Center (No. 160) in 2004; Christopher W. Klaus Advanced Computing Building (No. 153) in 2006; the Molecular Science and Engineering Building (No. 167) in 2006; and the Marcus Nanotechnology Research Center (No. 181) in 2008-09.

Dr. George P. “Bud” Peterson succeeded Dr. Clough as Georgia Tech’s 11th president in 2009. Over his 10-year tenure, President Peterson oversaw the continued expansion of Technology Square along with a few other signature developments on the original campus. These projects included: the Clough Undergraduate Learning Commons, which was completed in 2011; construction of the Kendeda Building for Innovative Sustainable Design and renovations of the Price Gilbert Memorial Library and Crosland Tower on the main campus in 2019; and the Coda mixed-use development in Tech Square, which was also completed in 2019.

While the outbreak of the COVID-19 pandemic initially hampered additional development at Georgia Tech after President Ángel Cabrera assumed office in September 2019, construction of the new Campus Center café, exhibition hall, and pavilion was finalized in early 2020, while work on the John Lewis Student Center and Penny and Roe Stamps Student Center Commons area was completed in the spring of 2022. Throughout its rich history, the Georgia Tech campus evolved as new buildings were constructed and the physical campus expanded. Today, the main campus physical plant consists of over 250 buildings located on approximately 400 acres.\footnote{164 Georgia Institute of Technology, Office of Institutional Research and Planning, Georgia Tech 2022 Fact Book.}
PART 2
IDENTIFICATION AND EVALUATION OF CULTURAL RESOURCES
2.1 INTRODUCTION

The Campus Historic Preservation planning process includes the identification and evaluation of cultural resources. This section of the Campus Historic Preservation Plan Update outlines the process for identifying and evaluating different types of cultural resources and the study’s resultant findings. These resources include buildings, structures, landscapes, and potential archaeological sites. Building interiors, outdoor sculpture and art, historic markers or memorials, and non-extant resources were not evaluated.

The process of identifying and evaluating historic resources is a requirement of Georgia's State Agency Stewardship Program. To determine the significance of these resources, the Board or Regents of the University System of Georgia uses the National Register of Historic Places (NRHP) Criteria for the Evaluation of Historic Properties. For planning purposes, resources owned or managed by the Institute that are at least 40 years old are surveyed. The NRHP identifies building that are 50 years old or older (with rare exceptions) as potentially eligible for listing, however, the 40-year benchmark for this report captures resources that may become eligible within the ten-year outlook of the CHPP document.
2.2 PREVIOUS HISTORIC PRESERVATION STUDIES

In 1992, funding was provided to the Department of Natural Resources to conduct a survey of architectural resources owned, or in some cases leased, by the State of Georgia. All state-owned buildings constructed prior to 1942 were identified and documented. The holdings of the Board of Regents (BOR) of the University System of Georgia (USG), which includes Georgia Tech, were included in the inventory. Forty-nine buildings were recorded on the Georgia Tech campus, 12 of which were contributing elements to the previously listed National Register of Historic Places District, and 26 additional buildings which appeared to meet the criteria for eligibility as contributing elements to expanded districts. The results of this survey were published in a document entitled “Held in Trust: Historic Buildings Owned by the State of Georgia.” The individual survey forms completed for this project may be reviewed online at https://www.gnahrgis.org/.

In 1998 the State of Georgia passed the State Agency Historic Property Stewardship Program (Senate Bill 446), requiring that state agencies identify significant cultural resources which are under their management and develop plans that give full consideration to the preservation, adaptive use, and maintenance of these assets. The USG, a state agency, delegated the responsibilities for complying with the Stewardship Program to the component institutions within the state university system.

In 2000, Lord Aeck & Sargent, Inc. (LAS) completed a survey of Georgia Tech’s significant collection of International Style buildings constructed between 1943 and 1965. This survey effort evaluated 24 buildings on campus. Two years later, an additional 10 buildings were surveyed to provide a complete record of campus buildings constructed between 1943 and 1965 (regardless of architectural style).

Also that year, “An Assessment of Prehistoric and Historic Archaeological Site Potential on the Georgia Tech Campus” was completed by New South Associates. In 2001, Georgia Tech became the first USG institution to develop a Campus Historic Preservation Plan (CHPP). The following year, the BOR obtained a Getty Foundation grant to develop guidelines for preparing Campus Historic Preservation Plans to standardize the content and deliverables of system-wide CHPPs so that the information gathered integrates with USG’s broader campus master planning processes.

In 2009, Georgia Tech developed an update to their Campus Historic Preservation Plan in an effort to examine its historic preservation activities since the Stewardship Program was enacted.
Georgia Tech also created that year the “Guiding Principles for Campus Historic Preservation,” a series of six principles developed to ensure alignment between the CHPP and the Institute’s other planning documents:

1) When engaged in planning activities on campus, Georgia Tech:

- Inventories historic resources on our campus.
- Recognizes and thoroughly considers historic resources in all of our planning activities.
- Incorporates information about historic assets into all planning efforts to make informed decisions about our historic resources, and their retention, maintenance, and continued usefulness.
- Conducts triennial Facility Condition Assessments for each building to determine the maintenance and deferred maintenance concerns for each building and provide appropriate stewardship of our assets and resources.
- Involves and partners with state agencies/Department of Natural Resources for enhanced technical assistance, techniques, collaboration and education.

2) When exercising stewardship of state resources, Georgia Tech:

- Invests in our cultural heritage.
- Increases public awareness and promotion of historic preservation.

3) When evaluating the continued use of historic assets, Georgia Tech:

- Considers adaptive re-use and restoration of historic structures that support Georgia Tech’s mission as the preferred course of action.
- Regularly assesses and maintains historic resources on our campus.
- Celebrates the Historic Hill District, a collection of 11 buildings listed on the National and Georgia Register of Historic Places, all of which have been renovated, restored, and preserved.
- Celebrates the 10 historic buildings that have been renovated since the completion of the 2001 Campus Historic Preservation Plan and continues to invest in the use, re-use, and preservation of our historic assets as financial resources become available.
- Considers demolition of a historic structure or landscape as a last resort, and only after careful and thoughtful consideration of other
options.

4) When considering investment in the physical campus, Georgia Tech:

- Strives for balance between the protection and preservation of the State’s cultural resources while providing for world-class educational and research facilities.
- Preserves historic assets that have the greatest value and that complement and add value to our mission.

5) As a leading sustainable campus, Georgia Tech:

- Pursues sustainable goals for historic structures and landscapes, balancing the retention of interior, exterior, and landscape character-defining features with desired performance.

6) When communicating the intended treatment of campus resources, Georgia Tech:

- Appropriately involves affected parties in discussions on actions that may affect a historic structure or landscape.
- Strives to be a statewide leader in Campus Historic Preservation activities, and actively seeks opportunities to share our lessons learned with other institutions.
2.3 SURVEY METHODOLOGY

2.3.1 Historic Architectural Resources

The BOR’s CHPP Guidelines describe three levels of architectural survey intensity based on the amount of condition information collected or the limits of the assessment. As part of the current study, buildings were surveyed according to Level I requirements. This level of survey assesses the major architectural elements and general condition of identified historic buildings. Surveyors observed each building, recorded physical characteristics, observable changes over time, and provided their assessments in several areas, including, NRHP eligibility, Institutional Value, and Anticipated Treatment.

Through the Spring of 2023, buildings owned or managed by the BOR, through Georgia Tech, identified in Georgia Tech’s database as being 40 years old or older were surveyed as part of the 2023 update to the Campus Historic Preservation Plan (CHPP). Surveys were conducted by LAS and MOSA architects. A total of 85 buildings were surveyed. Of that, 26 are new surveys since the previous 2009 CHPP update. Newly surveyed resources include newly acquired buildings and buildings constructed 1969 to 1983.
<table>
<thead>
<tr>
<th>Building Name</th>
<th>GT Building ID</th>
<th>Alt. Name</th>
<th>ASF</th>
<th>Year</th>
<th>Architect</th>
<th>GT Category</th>
<th>Architectural Style</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skiles, William Vernon</td>
<td>002</td>
<td>Skiles Building</td>
<td>71307</td>
<td>1959</td>
<td>A. Thomas Bradbury</td>
<td>ACADI&R</td>
<td>International Style</td>
</tr>
<tr>
<td>Classroom Building</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. W. Robert Alumni Faculty</td>
<td>003</td>
<td>Alumni House</td>
<td>16088</td>
<td>1911</td>
<td>Morgan And Dillon</td>
<td>CAMPSUPP</td>
<td>Romanesque Revival</td>
</tr>
<tr>
<td>Building</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smith Residence Hall</td>
<td>006</td>
<td>Smith, John M.</td>
<td>40141</td>
<td>1947</td>
<td>Bush-Brown, Gailey and Heffernan</td>
<td>RESIDENT</td>
<td>Academic Gothic</td>
</tr>
<tr>
<td>Brown Residence Hall</td>
<td>007</td>
<td>Brown, Julius</td>
<td>10985</td>
<td>1925</td>
<td>Skinner, Bush-Brown and Stowell</td>
<td>RESIDENT</td>
<td>Academic Gothic</td>
</tr>
<tr>
<td>Howell Residence Hall</td>
<td>010</td>
<td>Howell, Clark</td>
<td>14697</td>
<td>1939</td>
<td>Bush-Brown & Gailey (Jorgensen, Designer)</td>
<td>RESIDENT</td>
<td>Academic Gothic</td>
</tr>
<tr>
<td>Harris Residence</td>
<td>011</td>
<td>Harris, Nathaniel E.</td>
<td>13240</td>
<td>1926</td>
<td>Bush-Brown & Stowell, Gailey Associate</td>
<td>RESIDENT</td>
<td>Academic Gothic</td>
</tr>
<tr>
<td>Brittain Dining Hall</td>
<td>012</td>
<td>Brittain, Marion L.</td>
<td>14280</td>
<td>1928</td>
<td>Bush-Brown & Gailey</td>
<td>STUDSUPP</td>
<td>Academic Gothic</td>
</tr>
<tr>
<td>Cloudman Residence Hall</td>
<td>013</td>
<td>Cloudman</td>
<td>13832</td>
<td>1931</td>
<td>Bush-Brown, Gailey & Associates</td>
<td>RESIDENT</td>
<td>Academic Gothic</td>
</tr>
<tr>
<td>Harrison Residence Hall</td>
<td>014</td>
<td>Harrison, George W. Jr.</td>
<td>19616</td>
<td>1939</td>
<td>Bush-Brown & Gailey (Jorgensen, Designer)</td>
<td>RESIDENT</td>
<td>Academic Gothic</td>
</tr>
<tr>
<td>Towers Residence Hall</td>
<td>015</td>
<td>Towers, Donigan D.</td>
<td>29971</td>
<td>1947</td>
<td>Bush-Brown, Gailey and Heffernan</td>
<td>RESIDENT</td>
<td>Academic Gothic</td>
</tr>
<tr>
<td>Grant Field</td>
<td>017</td>
<td>West Stands at Grant Field</td>
<td>na</td>
<td>1903</td>
<td></td>
<td>ATHASSOC</td>
<td>No Academic style</td>
</tr>
<tr>
<td>Daniel Labs</td>
<td>022</td>
<td>Daniel, J.L.</td>
<td>11807</td>
<td>1942</td>
<td>Bush-Brown & Gailey</td>
<td>ACADI&R</td>
<td>Academic Gothic</td>
</tr>
<tr>
<td>OIT Engineering</td>
<td>023A</td>
<td>220 Bobby Dodd Way</td>
<td>1984</td>
<td>1927</td>
<td></td>
<td>CAMPSUPP</td>
<td>None</td>
</tr>
<tr>
<td>D.M Smith Building</td>
<td>024</td>
<td>Smith Building</td>
<td>23027</td>
<td>1923</td>
<td>Robert & Co. (F.P. Smith, Assoc.)</td>
<td>ACADI&R</td>
<td>Academic Gothic</td>
</tr>
<tr>
<td>Chapin Building</td>
<td>025</td>
<td>Chapin</td>
<td>4102</td>
<td>1910</td>
<td>Francis P. Smith</td>
<td>ACADSUPP</td>
<td>Neoclassical Revival</td>
</tr>
<tr>
<td>Archibald D. Holland Building</td>
<td>026</td>
<td>Holland, Archibald D. (Heating and Cooling)</td>
<td>3684</td>
<td>1914</td>
<td>Francis P. Smith</td>
<td>CAMPSUPP</td>
<td>None</td>
</tr>
<tr>
<td>Lyman Hall Building</td>
<td>029A</td>
<td>Lyman Hall Laboratory of Chemistry</td>
<td>13476</td>
<td>1906</td>
<td>Denny and Wachendorff</td>
<td>CAMPSUPP</td>
<td>Romanesque Revival</td>
</tr>
<tr>
<td>William Henry Emerson</td>
<td>029B</td>
<td>Emerson</td>
<td>10302</td>
<td>1906</td>
<td>R. S. Pringle & Francis P. Smith</td>
<td>CAMPSUPP</td>
<td>Academic Gothic</td>
</tr>
<tr>
<td>French Textile Building</td>
<td>030</td>
<td>French, Aaron</td>
<td>20309</td>
<td>1898</td>
<td>Lockwood, Green & Co</td>
<td>CAMPSUPP</td>
<td>Romanesque Revival</td>
</tr>
<tr>
<td>O'Keefe Main Building</td>
<td>033</td>
<td>O'Keefe, Daniel C.</td>
<td>68097</td>
<td>1924</td>
<td>Marye, Alger & Alger, Inc.</td>
<td>CAMPSUPP</td>
<td>Tudor Revival</td>
</tr>
<tr>
<td>O'Keefe Gym</td>
<td>033A</td>
<td>O'Keefe Gym</td>
<td>27045</td>
<td>1946</td>
<td></td>
<td>ATHASSOC</td>
<td>None</td>
</tr>
<tr>
<td>O'Keefe Custodial Services</td>
<td>033B</td>
<td>Womens Softball Locker Room</td>
<td>5207</td>
<td>1924</td>
<td></td>
<td>ATHASSOC</td>
<td>None</td>
</tr>
<tr>
<td>Administration Building</td>
<td>035</td>
<td>Evans, Lettie Pate Whitehead Administration</td>
<td>24399</td>
<td>1888</td>
<td>Bruce And Morgan</td>
<td>ACADSUPP</td>
<td>Romanesque Revival</td>
</tr>
<tr>
<td>Andrew Carnegie Building</td>
<td>036</td>
<td>Carnegie Building</td>
<td>6816</td>
<td>1906</td>
<td>Morgan And Dillon</td>
<td>ACADSUPP</td>
<td>Neoclassical Revival</td>
</tr>
<tr>
<td>Savant Building</td>
<td>038</td>
<td>Savant, Domenico P.</td>
<td>15829</td>
<td>1901</td>
<td>Walter T. Downing</td>
<td>ACADSUPP</td>
<td>Romanesque Revival</td>
</tr>
<tr>
<td>Janie A Swann Building</td>
<td>039</td>
<td>Swann Building</td>
<td>11552</td>
<td>1900</td>
<td>Walter T. Downing</td>
<td>ACADI&R</td>
<td>Romanesque Revival</td>
</tr>
<tr>
<td>Daniel Guggenheim Building</td>
<td>040</td>
<td>Guggenheim, Daniel F.</td>
<td>14293</td>
<td>1930</td>
<td>Bush-Brown & Gailey</td>
<td>ACADI&R</td>
<td>Romanesque Revival</td>
</tr>
<tr>
<td>Mechanics Building</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J.S. Coon Building</td>
<td>045</td>
<td>Coon, John Saylor</td>
<td>40024</td>
<td>1920</td>
<td>Francis P. Smith</td>
<td>ACADI&R</td>
<td>Neoclassical Revival</td>
</tr>
<tr>
<td>Building Name</td>
<td>Architect/Owner</td>
<td>Year</td>
<td>Description</td>
<td>Style</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
<td>------</td>
<td>-------------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thomas P Hinman Research Building</td>
<td>Hinman, Thomas P. Research</td>
<td>1939</td>
<td>Bush-Brown & Gailey (Heffeman, Designer)</td>
<td>ACADI&R International Style</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hinman Connector</td>
<td>Hinman, Thomas P. Addition</td>
<td>1939</td>
<td>Bush-Brown, Gailey and Heffeman</td>
<td>ACADI&R International Style</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calculator Building</td>
<td>Calculator</td>
<td>1947</td>
<td>Bush-Brown, Gailey and Heffeman</td>
<td>CAMPSUPP International Style</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Old Rich</td>
<td>Rich (Old)</td>
<td>1955</td>
<td>A. Thomas Bradbury</td>
<td>CAMPSUPP International Style</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructional Center</td>
<td>Instructional Center</td>
<td>1983</td>
<td>Thompson, Ventulett And Stainback</td>
<td>ACADI&R Brick Brutalism</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Groseclose Building</td>
<td>Groseclose, Colonel Frank F.</td>
<td>1983</td>
<td>Thompson, Ventulett And Stainback</td>
<td>ACADI&R Brick Brutalism</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial and Systems Engineering</td>
<td>ISyE Main</td>
<td>1983</td>
<td>Thompson, Ventulett And Stainback</td>
<td>ACADI&R Brick Brutalism</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Old Civil Engineering Building</td>
<td>Civil Engineering (Old)</td>
<td>1939</td>
<td>Bush-Brown (Rowland & Jorgensen, Designers)</td>
<td>ACADI&R Academic Gothic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stephen C Hall Building</td>
<td>Hall, Stephen C.</td>
<td>1924</td>
<td>GT Dept. of Architecture Faculty</td>
<td>ACADI&R Academic Gothic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>John and Joyce Caddell Building</td>
<td>Architecture Annex</td>
<td>1955</td>
<td>Stevens & Wilkinson</td>
<td>ACADI&R None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cherry L Emerson Building</td>
<td>Cherry Emerson</td>
<td>1959</td>
<td>John W. Cherry</td>
<td>ACADI&R International Style</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facilities/ Garage Warehouse</td>
<td>Facilities Garage/ Warehouse</td>
<td>1948</td>
<td>Bush-Brown, Gailey and Heffeman</td>
<td>CAMPSUPP None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>President's House</td>
<td>President's House</td>
<td>1949</td>
<td>Toombs And Creighton</td>
<td>RESIDENT Neoclassical Revival</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brittain Addition</td>
<td>Brittain, Marion L. "T" Room Addition</td>
<td>1949</td>
<td>Bush-Brown, Gailey and Heffeman</td>
<td>STUDSUPP Academic Gothic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Georgia Tech McCamish Pavilion</td>
<td>McCamish Pavilion</td>
<td>1955</td>
<td>Aec Associates</td>
<td>ATHASSOC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bradley Connector</td>
<td>Bradley, W.C. & Sarah</td>
<td>1951</td>
<td>Bush-Brown, Gailey and Heffeman</td>
<td>CAMPSUPP International Style</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Architecture West</td>
<td>Architecture (West)</td>
<td>1980</td>
<td>Cooper, Carry & Associates Inc.</td>
<td>ACADI&R Brutalism</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Architecture East</td>
<td>Architecture (East)</td>
<td>1952</td>
<td>Bush-Brown, Gailey and Heffeman</td>
<td>ACADI&R International Style</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Howey Physics Building</td>
<td>Howey, Joseph H.</td>
<td>1967</td>
<td>Robert & Company</td>
<td>ACADI&R Brick Brutalism</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weber Space Science & Technology Building I</td>
<td>Space Science & Technology 1 (SST1)</td>
<td>1967</td>
<td>John W. Cherry</td>
<td>ACADI&R Brutalism</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Van Leer Building</td>
<td>Van Leer, Blake R.</td>
<td>1961</td>
<td>Robert & Company</td>
<td>ACADI&R Late Modern</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bunger Henry Building</td>
<td>Bunger-Henry</td>
<td>1964</td>
<td>Finch, Alexander, Barnes, Rothschild & Paschal</td>
<td>ACADI&R Late Modern</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field Residence Hall</td>
<td>Field, Floyd Residence Hall</td>
<td>1961</td>
<td>W. Elliot Dunwoody, Jr.</td>
<td>RESIDENT Late Modern</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matheson Residence Hall</td>
<td>Matheson, Kenneth G. Residence Hall</td>
<td>1961</td>
<td>W. Elliot Dunwoody, Jr.</td>
<td>RESIDENT Late Modern</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>William G. Perry Residence Hall</td>
<td>Perry, William G. Residence Hall</td>
<td>1961</td>
<td>W. Elliot Dunwoody, Jr.</td>
<td>RESIDENT Late Modern</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>John F. Hanson Residence Hall</td>
<td>Hanson, Major John Residence Hall</td>
<td>1961</td>
<td>W. Elliot Dunwoody, Jr.</td>
<td>RESIDENT Late Modern</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hopkins Residence Hall</td>
<td>Hopkins, Issac S. Residence Hall</td>
<td>1961</td>
<td>W. Elliot Dunwoody, Jr.</td>
<td>RESIDENT Late Modern</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weber Space Science & Technology Building III</td>
<td>Space Science & Technology 3 (SST3)</td>
<td>1967</td>
<td>John W. Cherry</td>
<td>ACADI&R Brick Brutalism</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harry L. Baker Building</td>
<td>Baker, Harry L.</td>
<td>1969</td>
<td>Toombs, Amisano And Wells</td>
<td>GTRI Brick Brutalism</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building Name</td>
<td>Purpose</td>
<td>Address</td>
<td>Year</td>
<td>Architect</td>
<td>Design Style</td>
<td>Supervision</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------------------------------</td>
<td>----------------------</td>
<td>------</td>
<td>-------------------------------</td>
<td>-------------------------</td>
<td>--------------------</td>
<td></td>
</tr>
<tr>
<td>Dorothy M Crossland tower</td>
<td></td>
<td>69840</td>
<td>1968</td>
<td>Robert & Company</td>
<td>ACADSUPP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Montgomery Knight Building</td>
<td></td>
<td>34883</td>
<td>1968</td>
<td>John W. Cherry</td>
<td>ACADI&R</td>
<td>Brick Brutalism</td>
<td></td>
</tr>
<tr>
<td>Gillett Hillhouse, Boggs Building</td>
<td></td>
<td>87940</td>
<td>1970</td>
<td>Finch, Alexander, Barnes, Rothschild And Paschal</td>
<td>ACADI&R</td>
<td>Brick Brutalism</td>
<td></td>
</tr>
<tr>
<td>Facility Management Storage</td>
<td></td>
<td>366</td>
<td>1971</td>
<td>Finch, Alexander, Barnes, Rothschild And Paschal</td>
<td>ACADI&R</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>John Lewis Student Center</td>
<td></td>
<td>67873</td>
<td>1969</td>
<td>Finch, Alexander, Barnes, Rothschild And Paschal</td>
<td>STUDSUPP</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Robert C. Commander Building</td>
<td></td>
<td>4856</td>
<td>1969</td>
<td>James C. Wise - Simpson - Aiken And Associates</td>
<td>RESIDENT</td>
<td>Late Modern</td>
<td></td>
</tr>
<tr>
<td>Fulmer Residence Hall</td>
<td></td>
<td>8832</td>
<td>1969</td>
<td>James C. Wise - Simpson - Aiken And Associates</td>
<td>RESIDENT</td>
<td>Late Modern</td>
<td></td>
</tr>
<tr>
<td>Hefner Residence Hall</td>
<td></td>
<td>14895</td>
<td>1969</td>
<td>James C. Wise - Simpson - Aiken And Associates</td>
<td>RESIDENT</td>
<td>Late Modern</td>
<td></td>
</tr>
<tr>
<td>Armstrong Residence Hall</td>
<td></td>
<td>14372</td>
<td>1969</td>
<td>James C. Wise - Simpson - Aiken And Associates</td>
<td>RESIDENT</td>
<td>Late Modern</td>
<td></td>
</tr>
<tr>
<td>Caldwell Residence Hall</td>
<td></td>
<td>18810</td>
<td>1969</td>
<td>Bull & Kenney</td>
<td>RESIDENT</td>
<td>Late Modern</td>
<td></td>
</tr>
<tr>
<td>Folk Residence Hall</td>
<td></td>
<td>18673</td>
<td>1969</td>
<td>Bull & Kenney</td>
<td>RESIDENT</td>
<td>Late Modern</td>
<td></td>
</tr>
<tr>
<td>Mason Building</td>
<td></td>
<td>59098</td>
<td>1969</td>
<td>L. H. Swayze</td>
<td>ACADI&R</td>
<td>Late Modern</td>
<td></td>
</tr>
<tr>
<td>J Allen Couch Building</td>
<td></td>
<td>17545</td>
<td>1935</td>
<td>G. Lloyd Preacher & Co. Inc.</td>
<td>ACADI&R</td>
<td>Tudor Revival</td>
<td></td>
</tr>
<tr>
<td>Freeman Residence Hall</td>
<td></td>
<td>16600</td>
<td>1972</td>
<td>Bradbury & Assoc.</td>
<td>RESIDENT</td>
<td>Late Modern</td>
<td></td>
</tr>
<tr>
<td>Montag Residence Hall</td>
<td></td>
<td>16454</td>
<td>1972</td>
<td>Bradbury & Assoc.</td>
<td>RESIDENT</td>
<td>Late Modern</td>
<td></td>
</tr>
<tr>
<td>Fitten Residence Hall</td>
<td></td>
<td>18723</td>
<td>1972</td>
<td>Bradbury & Assoc.</td>
<td>RESIDENT</td>
<td>Late Modern</td>
<td></td>
</tr>
<tr>
<td>NARA Tech way Building (College of Computing Research)</td>
<td></td>
<td>24888</td>
<td>1970</td>
<td></td>
<td>ACADI&R</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Parking and Transportation Services</td>
<td></td>
<td>845 Marietta Street N.W.</td>
<td>11326</td>
<td>1980</td>
<td>Campsupp</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Grinnell Building</td>
<td></td>
<td>645 Northside Drive</td>
<td>53187</td>
<td>1955</td>
<td>Campsupp</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Building Service Center</td>
<td></td>
<td>24127</td>
<td>1975</td>
<td>Warner And Summers Inc.</td>
<td>Campsupp</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Enterprise Data Management</td>
<td></td>
<td>755 Marietta Street N.W.</td>
<td>10310</td>
<td>1979</td>
<td>Campsupp</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Academy of Medicine</td>
<td></td>
<td>14495</td>
<td>1941</td>
<td>R. Kennon Perry, Architect; Lentz Adler & Shutze, Consulting Arc</td>
<td>Campsupp</td>
<td>Neoclassical Revival</td>
<td></td>
</tr>
<tr>
<td>Hefferson House</td>
<td></td>
<td>2907</td>
<td>1923/1946</td>
<td></td>
<td>Campsupp</td>
<td>International Style</td>
<td></td>
</tr>
</tbody>
</table>

Table 1 - Baseline Data, 2023 Georgia Tech Historic Resource Survey.
2.3.2 Historic Landscape Architecture Resources

The survey of historic landscapes was conducted in April 2023 with follow up visits in May and June of 2023. This survey included the previously evaluated landscapes identified by the 2009 project steering committee as well as newly identified landscapes with potential historic significance. Prior to conducting fieldwork, historic background research was performed in order to establish an understanding of the developmental history of campus. During fieldwork, data was collected in the form of photo-documentation and landscape field forms. This data was compiled to produce the Historic Landscape Architecture Resources catalog. The catalog contains entries for the following landscapes: Academy of Medicine Garden, Architecture (East) Courtyard, Glenn-Towers Freshman Quadrangle, Brittain Dining Hall Entrance Courtyard, Skiles Courtyard, Grant Field, Harrison Square, Mayer Garden, Paul M. Heffernan House Landscape, President’s House Pettit Garden, Rose Bowl Field, and Tech Tower Lawn; there were previously surveyed and evaluated in 2009 and reevaluated for this CHPP update. Additional landscapes surveyed for this update include: Area 2 Housing Quadrangle, Peters Park/Parking Deck, Tech Parkway, and Kessler Campanile. All landscapes were surveyed in accordance with CHPP Guidelines according to Level I requirements. Information cataloged included existing conditions photographs, landscape names and numbers, associated building names and numbers, addresses, dates of construction, dates of alterations, gross acreage, original and current uses, GA/NRHP status or eligibility, and a general condition rating.

The project team reviewed historic documentation including photographs, drawings, and narratives held in Georgia Tech’s Archives and Records Management collection. Laurence Brennan, Planner with the Georgia Tech Planning, Design, and Construction Department of the Office of Infrastructure and Sustainability, was instrumental in locating additional original plans and documentation that were not used during the 2009 CHPP process. The project team reviewed research that was collected for the 2009 CHPP at the Atlanta History Center in the landscape collection within the Cherokee Garden Library. The team reviewed, for example, full scale drawings from the Edward Daugherty Collection of past landscape architecture projects at the Georgia Tech campus as well as a file from the general collection with drawings of the Academy of Medicine.

The project team compared existing landscape conditions against the historic conditions documented in photographs and plans to make a determination of the integrity of the resource and to make a recommendation of the current eligibility of the resource for listing on the NRHP. Ten of the sixteen landscapes inventoried were found to be
currently listed on the NRHP or eligible for listing. Section 2.4 provides additional information about eligibility findings and recommendations.

Landscape resources are classified based on their “Institutional Value” in an effort to help campus planners and decision-makers prioritize preservation efforts based on the importance of the resource to the campus. Section 2.6 outlines the criteria that was used to determine the value of each resource and accordingly lists each NRHP-listed or eligible landscape in one of four categories. Section 2.6 and the table therein provides a condition finding for the 16 landscapes noting known alterations and condition issues of each. Section 3.2 and 3.5 provide basic guidelines for treatment and definitions for a variety of types of rehabilitation. Section 3.6 provides guidelines specifically for Historic Landscape Architecture Resources.

2.3.3 Archaeological Resources

The 2009 CHPP included the first archaeological sensitivity study addressing properties acquired by Georgia Tech since 2001 and the guidelines adopted by the Georgia Board of Regents concerning campus historic preservation plans. The study reexamined portions of the Georgia Institute of Technology campus addressed in the 2001 report and expanded the scope to include campus properties acquired along West Peachtree Street and properties located between Tenth and Fourteenth Streets, north of the core campus area.

In June of 2001 during development of the CHPP, New South Associates, Inc. conducted a study to identify portions of the campus that could potentially contain archaeological resources. The 2001 study identified four areas with a high probability for archaeological discovery and three areas with moderate potential. The remainder of campus was considered to have a low probability for discovery of intact significant archaeological deposits. At the time, archival research and an extensive pedestrian survey of the campus was conducted to identify salient topographical elements and the extent of developmental impact.

As part of the 2001 survey, areas with the potential for the presence of prehistoric sites were determined by the location of high ground in proximity to natural stream courses within the bounds of the campus. Alternatively, the location of potential historic sites was determined by examining local history. Evidence for potential historic sites was primarily based on a review of maps and other archival materials on file with the Georgia Tech Archives and the Atlanta History Center. Local history in this area of Atlanta essentially begins with the Civil War.
In 2021, New South Associates completed the report, “Historic Streetcar Systems in Georgia: Context and Inventory”, and as a result of the context a Programmatic Agreement was approved between the Federal Highway Administration, the Georgia Department of Transportation, and The Georgia State Historic Preservation Office regarding documentation of historic streetcar track located at or below grade. Two principal lines spanned the campus. The Collins Park Company first applied for the Hemphill Avenue line franchise charter in 1899, and the Atlanta Street Railway operated on Marietta Street as early as 1891. These corridors have the potential to possess subsurface and surface features associated with the operation of the former streetcar lines.
2.4 NATIONAL REGISTER ELIGIBILITY

The National Register of Historic Places is the nation’s official list of properties and sites that have been determined to be historically significant. The State of Georgia also maintains the Georgia Register of Historic Places which parallels the National Register. In almost all instances when a building is listed on the National Register it is by default added to the Georgia Register. In order for a building to be considered eligible for the National Register of Historic Places, it must be 50 years old or older and evaluated within the framework of an established historic context, retain its integrity, and be significant for one or more of the criteria below.

Criteria for Evaluation

The quality of significance in American history, architecture, archaeology, engineering, and culture is present in districts, sites, buildings, structures, and objects that possess integrity of location, design, setting, materials, workmanship, feeling, association, and:

A. That are associated with events that have made a significant contribution to the broad patterns of our history; or

B. That are associated with the lives of significant persons in our past; or

C. That embody the distinctive characteristics of a type, period, or method of construction, or that represent the work of a master, or that possess high artistic values, or that represent a significant and distinguishable entity whose components may lack individual distinction; or

D. That have yielded, or may be likely to yield, information important in history or prehistory.

Criteria Considerations

Ordinarily cemeteries, birthplaces, graves of historical figures, properties owned by religious institutions or used for religious purposes, structures that have been moved from their original locations, reconstructed historic buildings, properties primarily commemorative in nature, and properties that have achieved significance within the past 50 years shall not be considered eligible for the National Register. However, such properties will qualify if they are integral parts of districts that do meet the criteria or if they fall within the following categories:

a. A religious property deriving primary significance from architectural or artistic distinction or historical importance; or
b. A building or structure removed from its original location but which is primarily significant for architectural value, or which is the surviving structure most importantly associated with a historic person or event; or

c. A birthplace or grave of a historical figure of outstanding importance if there is no appropriate site or building associated with his or her productive life; or

d. A cemetery that derives its primary importance from graves of persons of transcendent importance, from age, from distinctive design features, or from association with historic events; or

e. A reconstructed building when accurately executed in a suitable environment and presented in a dignified manner as part of a restoration master plan, and when no other building or structure with the same association has survived; or

f. A property primarily commemorative in intent if design, age, tradition, or symbolic value has invested it with its own exceptional significance; or

g. A property achieving significance within the past 50 years if it is of exceptional importance.

The act of applying the Criteria for Evaluation to historic resources results in a “determination of eligibility.” Based on this determination, resources can be generally divided into three categories:

- Resources listed on or considered eligible for listing on the National Register of Historic Places.
- Resources considered NOT eligible for listing on the National Register of Historic Places because they do not meet one or more of the above criteria.
- Resources that are not currently eligible for listing on the National Register of Historic Places due to age.

Each finding or determination of eligibility carries with it implications for planning and treatment as well as possible compliance with applicable legislation. The Georgia Department of Community Affairs, Historic Preservation Division, the state historic preservation office, must concur on the final determination of eligibility for state-owned properties.

The State of Georgia State Agency Stewardship Program as well as the Georgia Environmental Policy Act and Board of Regents policy requires that Listed or Eligible properties are managed and maintained in a manner that considers the preservation of their historic, archaeological, architectural, and cultural values. When considered for rehabilitation, the character-defining features of these resources should be preserved, and...
the Secretary of the Interior’s Standards for the Treatment of Historic Properties should be followed.

Resources identified as “not eligible” do not possess historic significance or maintain sufficient integrity to be considered eligible for listing on the National Register of Historic Places, either individually or as a contributing part of a district. No further historic preservation planning or management consideration needs be applied to these resources.

Resources that are “Not Currently Eligible” were constructed less than 50 years ago and therefore do not currently meet the eligibility criteria for listing on the National Register of Historic Properties, except if the property meets the exceptional significance requirements of Criterion Consideration G. Some resources that are not currently eligible, even under Criterion Consideration G, should be considered eligible for planning purposes because they are likely to be considered eligible when they reach 50 years of age within the next ten years. Architecture West (075), completed in 1980, may be eligible in 7 years and should be treated as eligible under current planning efforts. Due to its significant design, it is the only building on campus that has this exception at this time.

2.4.1 National Register Districts

A historic district, whether identified at a local, state, or federal level, is an area of land with defined boundaries that contains historic buildings, structures, landscapes, or other historic features that are identified as significant under one or more criteria of the listing agency. A potential historic district exists where there are multiple eligible historic properties that share significance under a common historic context.

The Georgia Institute of Technology Historic District, also called the Georgia Tech Historic District, is the only National Register of Historic Places, Historic District within the campus boundaries and is described in detail below. There are also several National Register historic districts outside of the campus, including, the Home Park School District to the north, the Fox Theater District to the east, the Southern Railway North Yards District to the south, and the Means Street District to the southwest. Means Street is also a locally designated City of Atlanta Landmark District with requirements for City of Atlanta Urban Design Commission approval of a Certificate of Appropriateness for planned exterior work. See Section 3 on treatment for more information. Several eligible historic districts may also exist outside of the campus borders, especially in the English Avenue and larger Home Park neighborhoods.
2.4.2 Existing District and Recommended Expansion

The Georgia Institute of Technology Historic District (NRIS# 78000983) was listed to the National Register of Historic Places in 1978. The district is significant in the areas of architecture, education, engineering, and science; “As one of the major engineering institutions in the United States, Georgia Tech, founded in 1885, has long been a driving force in the southeast in the area of technological training and innovation for continued industrial and scientific expansion.” Architecturally, the district exhibits a “consistent approach in design and construction” that reflects “turn-of-the-century” architectural styles that avoid “dull repetition of style or form”.

Eleven of the thirteen listed historic buildings on campus are contributing elements to the Georgia Tech historic district. There is also the Academy of Medicine, which is individually listed on the National Register, prior to its acquisition by Georgia Tech.

The eleven contributing properties of the Georgia Institute of Technology Historic District are as follows: 165

1. Evans Administration Building 035
2. French Textile Building 030
3. Janie A Swann Building 039
4. Savant Building 038
5. Andrew Carnegie Building 036
6. William Henry Emerson Building 029B
7. Lyman Hall Building 029A
8. Chapin Building 025
9. L. W. Robert Alumni Faculty Building 003
10. J.S. Coon Building 045
11. D.M. Smith Building 024

Because the survey for the 1978 National Register nomination was conducted in 1975, only buildings that were 50 years old or older at that time were listed (i.e. 1925 and later). However, the current survey work has found that the historic contexts and architectural styles identified in the Georgia Tech Historic District also exist in historic campus buildings constructed from 1926 up to 1949 and within the historic campus core. In addition to proximity with the National Register contributing resources,

165 There were originally twelve buildings in the Georgia Tech Historic District, but in the 1990s, the c. 1897 Knowles Building was demolished.
these buildings share character-defining elements of style, form, materials, and massing with the existing historic district; as well as shared historic background and context in education, engineering, and science.

Common features among these buildings are their representation of the second stage of campus development including several buildings which were constructed as part of the New Deal, Public Works Administration (PWA) program during the late 1930s and early 1940s. Architecturally, they are predominantly designed in the early Collegiate Gothic and Neoclassical Revival styles, and exemplify the evolution of these styles from highly-ornamented versions to later streamlined expressions with diminishing stylistic ornamentation. Notable architects involved in the design of these buildings include James L. Skinner, Harold Bush-Brown, Kenneth Kingsley Stowell, James Herbert Gailey, and others from the Institute’s architecture faculty.

Eighteen buildings were identified as being eligible for inclusion in a recommended historic district expansion and are as follows:

1. Grant Field 017
2. Archibald D. Holland Building 026
3. Stephen C Hall Building 059
4. Brown Residence Hall 007
5. Harris residence 011
6. Brittain Dining Hall 012
7. Daniel Guggenheim Building 040
8. Cloudman Residence Hall 013
9. Engineering Science and Mechanics 041
10. Harrison Residence Hall 014
11. Howell Residence Hall 010
12. Old Civil Engineering Building 058
13. Daniel Labs 022
14. Glenn Residence Hall 016
15. Smith Residence Hall 006
16. Towers Residence Hall 015
17. Brittain Addition 072
18. President's House 071
2.4.3 Recommended International Style District

Ten buildings are eligible under Criterion A for their association with the third phase of campus development (1940s M-Series plans) and under Criterion C as representative examples of the International Style in Georgia.

Beginning when Paul Heffernan joined the Georgia Tech architecture faculty in 1938, the planning and development of the campus took a dramatic turn away from traditional forms of architecture to embrace the experimentally modern International Style. In the year 2000, Georgia Tech embarked on a forward-thinking study of International Style buildings and determined that there were 24 building and structures that possessed “characteristics of the International Style”. The report acknowledged that several of these possessed “modern and contemporary” characteristics associated with “Late International Style”. Of these, six were identified as eligible. The remaining surveyed buildings were either determined not eligible due to a loss of integrity or because they had not yet reached the 50-year threshold and did not meet Criterion Consideration G, which allows for consideration of exceptional buildings that are not yet 50 years old.

<table>
<thead>
<tr>
<th>#</th>
<th>Building Name</th>
<th>ID</th>
<th>2000 Eligibility Recommendation</th>
<th>Current Status / Eligibility Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Burge Apartments</td>
<td>001</td>
<td>Not Eligible - Integrity</td>
<td>Demolished</td>
</tr>
<tr>
<td>2</td>
<td>Skiles</td>
<td>002</td>
<td>Eligible</td>
<td>Eligible - International Style</td>
</tr>
<tr>
<td>3</td>
<td>West Stands Grant Field</td>
<td>017</td>
<td>Not Eligible - Integrity</td>
<td>Not Eligible - Integrity</td>
</tr>
<tr>
<td>4</td>
<td>Hightower Building</td>
<td>044</td>
<td>Eligible</td>
<td>Demolished</td>
</tr>
<tr>
<td>5</td>
<td>Cherry Emerson</td>
<td>066</td>
<td>Not Eligible - Age</td>
<td>Eligible - International Style</td>
</tr>
<tr>
<td>6</td>
<td>Callaway Apartments</td>
<td>070</td>
<td>Eligible</td>
<td>Demolished</td>
</tr>
<tr>
<td>7</td>
<td>Alexander Memorial Coliseum</td>
<td>073</td>
<td>Not Eligible - Age</td>
<td>Not Eligible - Integrity</td>
</tr>
<tr>
<td>8</td>
<td>Former WGST Radio Station</td>
<td>073B</td>
<td>Not Eligible - Age</td>
<td>Not Eligible - Integrity</td>
</tr>
<tr>
<td>9</td>
<td>Bradley Connector</td>
<td>074</td>
<td>Eligible</td>
<td>Eligible - International Style</td>
</tr>
<tr>
<td>10</td>
<td>Architecture East</td>
<td>076</td>
<td>Eligible</td>
<td>Eligible - International Style</td>
</tr>
<tr>
<td>11</td>
<td>Gilbert Price Library</td>
<td>077</td>
<td>Eligible</td>
<td>Eligible - International Style</td>
</tr>
<tr>
<td>12</td>
<td>Electronics Research</td>
<td>079</td>
<td>Not Eligible - Age</td>
<td>Demolished</td>
</tr>
<tr>
<td>13</td>
<td>Whitehead Infirmary</td>
<td>082</td>
<td>Not Eligible - Age</td>
<td>Demolished</td>
</tr>
<tr>
<td>14</td>
<td>Van Leer</td>
<td>085</td>
<td>Not Eligible - Age</td>
<td>Eligible - Late Modern</td>
</tr>
<tr>
<td>15</td>
<td>Burgo-Henry</td>
<td>086</td>
<td>Not Eligible - Age</td>
<td>Eligible - Late Modern</td>
</tr>
<tr>
<td>16</td>
<td>Neely Nuclear Reactor</td>
<td>087</td>
<td>Not Eligible - Age</td>
<td>Demolished</td>
</tr>
<tr>
<td>17</td>
<td>Field Residence</td>
<td>090</td>
<td>Not Eligible - Age</td>
<td>Eligible - Late Modern</td>
</tr>
<tr>
<td>18</td>
<td>Matheson Residence</td>
<td>091</td>
<td>Not Eligible - Age</td>
<td>Eligible - Late Modern</td>
</tr>
<tr>
<td>19</td>
<td>Perry Residence</td>
<td>092</td>
<td>Not Eligible - Age</td>
<td>Eligible - Late Modern</td>
</tr>
<tr>
<td>20</td>
<td>Hanson Residence</td>
<td>093</td>
<td>Not Eligible - Age</td>
<td>Eligible - Late Modern</td>
</tr>
<tr>
<td>21</td>
<td>Hopkins Residence</td>
<td>094</td>
<td>Not Eligible - Age</td>
<td>Eligible - Late Modern</td>
</tr>
<tr>
<td>22</td>
<td>Ajax Building</td>
<td>097</td>
<td>Not Eligible - Integrity</td>
<td>Demolished</td>
</tr>
<tr>
<td>23</td>
<td>Plant Operations Garage</td>
<td>067A</td>
<td>Not Eligible - Integrity</td>
<td>Not Eligible - Integrity</td>
</tr>
<tr>
<td>24</td>
<td>King Roy Plant Operations</td>
<td>083</td>
<td>Not Eligible - Age</td>
<td>Demolished</td>
</tr>
</tbody>
</table>

Table 2 - Resources identified in the 2000 International Style survey and their current status.
Five of the six buildings identified as eligible in the 2000 survey were identified in the current study as being representative of the International Style (the remaining eligible building from the 2000 survey, the Hightower Building, has since been demolished). Five additional resources were added to the International Style grouping in the current study. Of these five, Calculator, Old Rich, and the Hinman Connector, may have been grouped together with the Hinman Research Building in the previous study. Cherry Emerson has since passed the 50-year mark and the Heffernan House has been included for its association with P.M. Heffernan and because it exhibits Heffernan’s modern adaptation of the residence. The ten buildings identified as contributing to a potential International Style district are:

1. Cherry L Emerson Building 066
2. Thomas P Hinman Research Building 051
3. Heffernan House 720
4. Calculator Building 051B
5. Bradley Connector 074
6. Hinman Connector 051A
7. Architecture East 076
8. Judge S Price Gilbert Library 077
9. Old Rich 051C
10. Skiles Building 002
<table>
<thead>
<tr>
<th>Building Name</th>
<th>GT Building ID</th>
<th>Year</th>
<th>National Register of Historic Places Evaluation</th>
<th>District Name</th>
<th>Significance/Integrity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skiles, William Vernon Classroom Building</td>
<td>002</td>
<td>1959</td>
<td>Recommend eligible as contributing to proposed district</td>
<td>International Style District</td>
<td>The Skiles Classroom Building is significant under Criteria A and C. Constructed in 1959, it is representative of mid-twentieth century growth throughout the University System of Georgia spanning from 1946-1956 known as the System's third phase of development. The Skiles Building is representative of the work of A. Thomas Bradbury and is designed in the International Style within an institutional modern design aesthetic. The Skiles Building is recommended eligible as part of a proposed International Style National Register of Historic Places District on campus.</td>
</tr>
<tr>
<td>L. W. Robert Alumni Faculty Building</td>
<td>003</td>
<td>1911</td>
<td>Contributing resource to a listed historic district</td>
<td>Georgia Tech Historic District</td>
<td>The L.W. Robert Alumni House (former YMCA) is significant under Criteria A and C. As an early twentieth century building, it represents the first stage of campus development. The building is representative of the Neoclassical Revival style, popular during the early twentieth century. It is a contributing resource in the Georgia Tech National Register of Historic Places Historic District.</td>
</tr>
<tr>
<td>Smith Residence Hall</td>
<td>006</td>
<td>1947</td>
<td>Recommend eligible as contributing to proposed district</td>
<td>Georgia Tech Historic District Expansion</td>
<td>Smith Hall is significant under Criteria A and C. As a mid-twentieth century building, it represents the third stage of campus development. The building represents the work of Institute architecture faculty, including Bush-Brown and P.M. Heffernan and is an excellent example of the later streamlined Collegiate Gothic style on campus. The eight dormitories comprising the east campus residential quadrangle around the Brittain Dining Hall (known as Area I) represent the evolution of architectural style from the highly-ornamented Collegiate Gothic through a more refined version of the style to the later streamlined Collegiate Gothic style with diminishing stylistic ornamentation. Smith Hall is recommended eligible as part of a proposed expansion to the Georgia Tech Historic District.</td>
</tr>
<tr>
<td>Building</td>
<td>Year</td>
<td>Significance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>------</td>
<td>--------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brown Residence Hall</td>
<td>1925</td>
<td>Recommend eligible as contributing to proposed district</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Howell Residence Hall</td>
<td>1939</td>
<td>Recommend eligible as contributing to proposed district</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harris Residence</td>
<td>1926</td>
<td>Recommend eligible as contributing to proposed district</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Brown Residence Hall

Brown Residence Hall is significant under Criteria A and C. As an early twentieth century building, it represents the second stage of campus development. The building represents the work of Institute architecture faculty, including James L. Skinner, Harold Bush-Brown and Kenneth Kingsley Stowell and is an excellent example of the early Collegiate Gothic style on campus. The eight dormitories comprising the east campus residential quadrangle around the Brittain Dining Hall (known as Area I) represent the evolution of architectural style from the highly-ornamented Collegiate Gothic through a more refined version of the style to the later streamlined Collegiate Gothic style with diminishing stylistic ornamentation. Brown Hall is recommended eligible as part of a proposed expansion to the existing Georgia Tech National Register of Historic Places District.

Howell Residence Hall

Howell Hall is significant under Criteria A and C. As an early-to-mid twentieth century building, it represents the second stage of campus development and is a product of the New Deal, Public Works Administration (PWA) program. The building was designed by Institute architecture faculty and is an excellent example of the refined Collegiate Gothic style on campus. The eight dormitories comprising the east campus residential quadrangle around the Brittain Dining Hall (known as Area I) represent the evolution of architectural style from the highly-ornamented Collegiate Gothic through a more refined version of the style to the later streamlined Collegiate Gothic style with diminishing stylistic ornamentation. Howell Hall is recommended eligible as part of a proposed expansion to the existing Georgia Tech National Register of Historic Places District.

Harris Residence

Harris Hall is significant under Criteria A and C. As an early twentieth century building, it represents the second stage of campus development. The building represents the work of Institute architecture faculty, including Harold Bush-Brown and Kenneth Kingsley Stowell and is an excellent example of the early Collegiate Gothic style on campus. The eight dormitories comprising the east campus residential quadrangle around the Brittain Dining Hall (known as Area I) represent the evolution of architectural style from the highly-ornamented Collegiate Gothic through a more refined version of the style to the later streamlined Collegiate Gothic style with diminishing stylistic ornamentation. Harris Hall is recommended eligible as part of a proposed expansion to the existing Georgia Tech National Register of Historic Places District.
<table>
<thead>
<tr>
<th>Building</th>
<th>Code</th>
<th>Year</th>
<th>Recommendation</th>
<th>District and Expansion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brittain Dining Hall</td>
<td>012</td>
<td>1928</td>
<td>Recommend eligible as contributing to proposed district</td>
<td>Georgia Tech Historic District Expansion</td>
</tr>
<tr>
<td>Cloudman Residence Hall</td>
<td>013</td>
<td>1931</td>
<td>Recommend eligible as contributing to proposed district</td>
<td>Georgia Tech Historic District Expansion</td>
</tr>
<tr>
<td>Harrison Residence Hall</td>
<td>014</td>
<td>1939</td>
<td>Recommend eligible as contributing to proposed district</td>
<td>Georgia Tech Historic District Expansion</td>
</tr>
</tbody>
</table>

Brittain Dining Hall is significant under Criteria A and C. This building was conceived as the center-piece of a new east campus residential area that would eventually cover two city blocks. As an early twentieth-century building, it represents the second stage of campus development. The building was designed by Institute faculty Bush-Brown & Gailey and is an excellent example of the early Collegiate Gothic style on campus. Brittain Dining Hall is recommended eligible as part of a proposed expansion to the existing Georgia Tech National Register of Historic Places District.

Cloudman Hall is significant under Criteria A and C. As an early twentieth century building, it represents the second stage of campus development. The building represents the work of Institute architecture faculty, including Bush-Brown and James Herbert Gailey and is an excellent example of the early Collegiate Gothic style on campus. The eight dormitories comprising the east campus residential quadrangle around the Brittain Dining Hall (known as Area I) represent the evolution of architectural style from the highly-ornamented Collegiate Gothic through a more refined version of the style to the later streamlined Collegiate Gothic style with diminishing stylistic ornamentation. Cloudman Hall is recommended eligible as part of a proposed expansion to the existing Georgia Tech National Register of Historic Places District.

Harrison Hall is significant under Criteria A and C. As an early-to-mid twentieth century building, it represents the second stage of campus development and is a product of the New Deal, Public Works Administration (PWA) program. Architecturally, it represents the work of Institute architecture faculty, including Bush-Brown and Matthew Jorgensen and is an excellent example of the refined Collegiate Gothic style of architecture on campus. The eight dormitories comprising the east campus residential quadrangle around the Brittain Dining Hall (known as Area I) represent the evolution of architectural style from the highly-ornamented Collegiate Gothic through a more refined version of the style to the later streamlined Collegiate Gothic style with diminishing stylistic ornamentation. Harrison Hall is recommended eligible as part of a proposed expansion to the existing Georgia Tech National Register of Historic Places District.
<table>
<thead>
<tr>
<th>Building</th>
<th>Year</th>
<th>Recommended as Contributing to Proposed District</th>
<th>Georgia Tech Historic District Expansion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Towers Residence Hall 015</td>
<td>1947</td>
<td>Recommend eligible as contributing</td>
<td>Georgia Tech Historic District Expansion</td>
</tr>
</tbody>
</table>

Towers Hall is significant under Criteria A and C. As a mid-twentieth century building, it represents the third stage of campus development. The building represents the work of Institute architecture faculty, including Bush-Brown and Heffernan and is an excellent example of the later streamlined Collegiate Gothic style on campus. The eight dormitories comprising the east campus residential quadrangle around the Brittain Dining Hall (known as Area I) represent the evolution of architectural style from the highly-ornamented Collegiate Gothic through a more refined version of the style to the later streamlined Collegiate Gothic style with diminishing stylistic ornamentation. Towers Hall is recommended eligible as part of a proposed expansion to the Georgia Tech Historic District.

| Glenn Residence Hall 016 | 1947 | Recommend eligible as contributing | Georgia Tech Historic District Expansion |

Glenn Hall is significant under Criteria A and C. As a mid-twentieth century building, it represents the third stage of campus development. The building represents the work of Institute architecture faculty, including Bush-Brown and Heffernan and is an excellent example of the later streamlined Collegiate Gothic style on campus. The eight dormitories comprising the east campus residential quadrangle around the Brittain Dining Hall (known as Area I) represent the evolution of architectural style from the highly-ornamented Collegiate Gothic through a more refined version of the style to the later streamlined Collegiate Gothic style with diminishing stylistic ornamentation. Glenn Hall is recommended eligible as part of a proposed expansion to the existing Georgia Tech National Register of Historic Places District.

| Grant Field | 1903 | Recommend eligible as contributing | Georgia Tech Historic District Expansion |

The concrete stadium originally constructed in 1925 and designed by Robert & Company has undergone multiple upgrades over the years. As such, Bobby Dodd Stadium is not significant within the historic context of the Institute. However, Grant Field and portions of extant early bleachers below the stadium are significant for their association and value to the institution.

| Daniel Labs | 1942 | Recommend eligible as contributing | Georgia Tech Historic District Expansion |

The Daniel Laboratory is significant under Criteria A and C. Constructed in 1942, the building is representative of the second phase of campus development and is a product of the New Deal, Public Works Administration (PWA) program. The building was designed by Bush-Brown, Gailey, Heffernan & Associates (Bush-Brown & M.L. Jorgensen) and represents the use of the Collegiate Gothic style on campus.

| OIT Engineering | 1927 | Not Eligible - Significance | |

220 Bobby Dodd Way was constructed in 1927. It does not embody a distinctive form or style and does not strongly associate with significant campus development themes.
<table>
<thead>
<tr>
<th>Building Name</th>
<th>Year</th>
<th>Year Type</th>
<th>District</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.M Smith Building</td>
<td>1923</td>
<td>Contributing</td>
<td>Georgia Tech Historic District</td>
<td>The D.M. Smith building is significant under Criteria A and C. As the first building to be constructed on campus during President Brittain's tenure, it represents the beginning of the second stage of campus development at Georgia Tech. The building was the first of many on campus to be designed in the Collegiate Gothic style. It is a contributing resource in the Georgia Tech National Register of Historic Places Historic District.</td>
</tr>
<tr>
<td>Chapin Building</td>
<td>1910</td>
<td>Contributing</td>
<td>Georgia Tech Historic District</td>
<td>The Chapin building is significant under Criteria A and C. As the first health facility/hospital on campus and an early twentieth century building, it was part of the first stage of campus development. The building is representative of the Neoclassical Revival style popular during the early twentieth century. It is a contributing resource to the Georgia Tech National Register of Historic Places Historic District.</td>
</tr>
<tr>
<td>Archibald D. Holland Building</td>
<td>1914</td>
<td>Recommend</td>
<td>Georgia Tech Historic District</td>
<td>The Archibald D. Holland building is significant under Criteria A and C. As one of the earliest campus buildings, it represents the first stage of campus development. The building is representative of the Neoclassical Revival style popular during the early twentieth century. As a continuously operated power plant, the building has had many alterations, but retains its historic character-defining features.</td>
</tr>
<tr>
<td>Lyman Hall Building</td>
<td>1906</td>
<td>Contributing</td>
<td>Georgia Tech Historic District</td>
<td>Lyman Hall building is significant under Criteria A and C. As the Institute's first Chemical Engineering Building and one of the earliest campus buildings, it represents the first stage of campus development. The building is representative of the Neoclassical Revival style popular during the early twentieth century as classically-inspired architectural styles evolved from the earlier Victorian styles. It is a contributing resource in the Georgia Tech National Register of Historic Places Historic District.</td>
</tr>
<tr>
<td>William Henry Emerson Building</td>
<td>1906</td>
<td>Contributing</td>
<td>Georgia Tech Historic District</td>
<td>The Emerson building is significant under Criteria A and C. Constructed in 1925 as an annex to the Lyman Hall Chemistry Building, it represents the second stage of campus development. The building was designed by R.S. Pringle and F.P. Smith and represents the early Collegiate Gothic style on campus as well as the transition from the Neoclassical style of Lyman Hall constructed nineteen (19) years earlier.</td>
</tr>
<tr>
<td>French Textile Building</td>
<td>1898</td>
<td>Contributing</td>
<td>Georgia Tech Historic District</td>
<td>The A. French Building is significant under Criteria A and C. As the first Textiles Building and one of the earliest campus buildings, it represents the first stage of campus development as well as the "Shop Culture" originally employed at Georgia Tech. The building is representative of a mill-type building employed on early Tech buildings, and has elements of the Romanesque Revival style. It is a contributing resource in the Georgia Tech National Register of Historic Places Historic District.</td>
</tr>
<tr>
<td>Building Name</td>
<td>Code</td>
<td>Year</td>
<td>Eligibility</td>
<td>District</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------</td>
<td>------</td>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>O'Keefe Main Building</td>
<td>033</td>
<td>1924</td>
<td>Potentially eligible as contributing to potential district</td>
<td>Atlanta School Buildings</td>
</tr>
<tr>
<td>O'Keefe Gym</td>
<td>033A</td>
<td>1946</td>
<td>Potentially eligible as contributing to potential district</td>
<td>Atlanta School Buildings</td>
</tr>
<tr>
<td>O'Keefe Custodial Services Building</td>
<td>033B</td>
<td>1924</td>
<td>NOT Eligible for listing - Integrity</td>
<td>The custodial services building is not architecturally significant and is not significant to the history or development of the campus.</td>
</tr>
<tr>
<td>Evans Administration Building</td>
<td>035</td>
<td>1888</td>
<td>Contributing resource to a listed historic district</td>
<td>Georgia Tech Historic District</td>
</tr>
<tr>
<td>Andrew Carnegie Building</td>
<td>036</td>
<td>1906</td>
<td>Contributing resource to a listed historic district</td>
<td>Georgia Tech Historic District</td>
</tr>
<tr>
<td>Savant Building</td>
<td>038</td>
<td>1901</td>
<td>Contributing resource to a listed historic district</td>
<td>Georgia Tech Historic District</td>
</tr>
<tr>
<td>Janie A Swann Building</td>
<td>039</td>
<td>1900</td>
<td>Contributing resource to a listed historic district</td>
<td>Georgia Tech Historic District</td>
</tr>
</tbody>
</table>

The O'Keefe building is associated with the residential neighborhood originally located to the north of the early Georgia Tech campus. Originally constructed as a school, this building is representative of the Collegiate Gothic style. This building was acquired by the Institute in 1979, and is therefore not significant within the historic educational context of the Institute.

The O'Keefe Gym is associated with the O'Keefe school originally located to the north of the early Georgia Tech campus. This building was acquired by the Institute in 1979, and is therefore not significant within the historic educational context of the Institute.

The custodial services building is not architecturally significant and is not significant to the history or development of the campus.

The Administration Building is significant under Criteria A and C. As one of the first two campus buildings, it represents the earliest period of campus development. It was designed by the Atlanta firm of Bruce and Morgan and is representative of the Romanesque Revival style of architecture employed in late-nineteenth century academic buildings. It is a contributing resource in the Georgia Tech National Register of Historic Places Historic District.

The Carnegie building is significant under Criteria A and C. As well as being part of Andrew Carnegie's philanthropic library program, it was also Georgia Tech's first library building and was part of the first stage of campus development. The building is representative of the Neoclassical Revival style popular during the early twentieth century. It is a contributing resource to the Georgia Tech National Register of Historic Places Historic District.

The Savant Building is significant under Criteria A and C. As the first Electrical Engineering Building and one of the earliest campus buildings, it represents the first stage of campus development. The building represents the work of Walter T. Downing. It is designed in the Neoclassical Revival style popular during the early twentieth century. It is a contributing resource in the Georgia Tech National Register of Historic Places Historic District.

The Swann building is significant under Criteria A and C. As one of the earliest campus buildings, it represents the first stage of campus development. The building represents the work of Walter T. Downing. It is designed in the Neoclassical Revival style popular during the early twentieth century as classically-inspired architectural styles evolved from the earlier Victorian styles. It is a contributing resource in the Georgia Tech National Register of Historic Places Historic District.
<table>
<thead>
<tr>
<th>Building Name</th>
<th>Building Code</th>
<th>Year</th>
<th>Eligibility</th>
<th>Historic District</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daniel Guggenheim Building</td>
<td>040</td>
<td>1930</td>
<td>Recommend eligible as contributing</td>
<td>Georgia Tech Historic District</td>
<td>The Guggenheim Building is significant under Criteria A and C. Constructed in 1930, the building represents the second stage of campus development and housed the School of Aeronautics. Architecturally, it was designed by Bush-Brown & Gailey and is an excellent example of the early Collegiate Gothic style of architecture on campus.</td>
</tr>
<tr>
<td>Engineering Science and Mechanics</td>
<td>041</td>
<td>1938</td>
<td>Recommend eligible as contributing</td>
<td>Georgia Tech Historic District</td>
<td>The Engineering Science and Mechanics Building is significant under Criteria A and C. Constructed in 1939, it is representative of the second phase of campus development and is a product of the New Deal, Public Works Administration (PWA) program. The building was designed by Bush-Brown, Gailey, Heffernan & Associates and represents the early use of the Collegiate Gothic style on campus.</td>
</tr>
<tr>
<td>J.S. Coon Building</td>
<td>045</td>
<td>1920</td>
<td>Contributing resource to a listed</td>
<td>Georgia Tech Historic District</td>
<td>The John Saylor Coon building is significant under Criteria A and C. As an early twentieth century building, it represents the first stage of campus development. The building is representative of the Renaissance Revival style popular during the early twentieth century as classically-inspired architectural styles evolved from the earlier Victorian styles. It is a contributing resource in the Georgia Tech National Register of Historic Places Historic District.</td>
</tr>
<tr>
<td>Thomas P Hinman Research Building</td>
<td>051</td>
<td>1939</td>
<td>Recommend eligible as contributing</td>
<td>International Style District</td>
<td>The Hinman Highbay is significant under Criteria A and C as a product of the New Deal, Public Works Administration (PWA) program. The Highbay represents the work of Bush-Brown, Gailey & Heffernan with Heffernan as the lead designer. This portion of the building is not only the first example of the International Style on the Georgia Tech campus, but also an early example system-wide of the transitional period where campus planning and the design of campus buildings took on an institutional modern design aesthetic. The Hinman Building is recommended eligible as part of an International Style National Register of Historic Places District on campus.</td>
</tr>
<tr>
<td>Hinman Connector</td>
<td>051A</td>
<td>1951</td>
<td>Recommend eligible as contributing</td>
<td>International Style District</td>
<td>The Hinman Connector is significant under Criteria A and C. Constructed in 1951, the building is representative of a period of post-war growth throughout the University System of Georgia spanning from 1946-1956 known as the System's third phase of development. Architecturally, the Hinman Connector continued the International Style design aesthetic on campus.</td>
</tr>
<tr>
<td>Calculator Building</td>
<td>051B</td>
<td>1947</td>
<td>Recommend eligible as contributing</td>
<td>International Style District</td>
<td>The Calculator building is significant under Criteria A and C. Constructed in 1947, the building is representative of a period of post-war growth throughout the University System of Georgia spanning from 1946-1956 known as the System's third phase of development. Architecturally, the Calculator Building continued the International Style design aesthetic on campus. The Calculator Building was adjoined to the Hinman Building in 1951 by the addition of the "Hinman Connector."</td>
</tr>
</tbody>
</table>

103
<table>
<thead>
<tr>
<th>Building Name</th>
<th>Code</th>
<th>Year</th>
<th>Eligibility</th>
<th>Architectural Style or District</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old Rich</td>
<td>051C</td>
<td>1955</td>
<td>Recommend eligible as contributing to proposed district</td>
<td>International Style District</td>
</tr>
<tr>
<td>Rich Computer Center</td>
<td>051D</td>
<td>1973</td>
<td>Potentially eligible as contributing to potential district</td>
<td>Late Modern Architecture</td>
</tr>
<tr>
<td>Instructional Center</td>
<td>055</td>
<td>1983</td>
<td>Not Currently Eligible - Age</td>
<td></td>
</tr>
<tr>
<td>Groseclose Building</td>
<td>056</td>
<td>1983</td>
<td>Not Currently Eligible - Age</td>
<td></td>
</tr>
<tr>
<td>Industrial and Systems</td>
<td>057</td>
<td>1983</td>
<td>Not Currently Eligible - Age</td>
<td></td>
</tr>
<tr>
<td>Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Old Civil Engineering Building</td>
<td>058</td>
<td>1939</td>
<td>Recommend eligible as contributing to proposed district</td>
<td>Georgia Tech Historic District Expansion</td>
</tr>
<tr>
<td>Stephen C Hall Building</td>
<td>059</td>
<td>1924</td>
<td>Recommend eligible as contributing to proposed district</td>
<td>Georgia Tech Historic District Expansion</td>
</tr>
<tr>
<td>John and Joyce Caddell</td>
<td>060A</td>
<td>1955</td>
<td>NOT Eligible for listing - Integrity</td>
<td></td>
</tr>
<tr>
<td>Building</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cherry L Emerson Building</td>
<td>066</td>
<td>1959</td>
<td>Potentially eligible as contributing to proposed district</td>
<td>International Style District</td>
</tr>
</tbody>
</table>

The Rich building is significant under Criteria A and C. As a mid-twentieth century development on campus, The Rich Building continued the modern design aesthetic begun by the design of the Hinman Building.

The Rich Computer Center may be significant under Criterion A and C. Constructed in 1973, the building is representative of the campus' fourth phase of development and is one of the last buildings to be built that decade. It is a representative example of Brutalist Architecture, which adds red brick to the style's eponymous material, concrete.

The Instructional Center building does not currently meet eligibility requirements for age and does not have exceptional characteristics to meet Criterion Consideration G.

The Groseclose Building does not currently meet the eligibility requirements for age and does not have exceptional characteristics to meet Criterion Consideration G.

The Industrial and Systems Engineering building does not currently meet eligibility requirements for age and does not have exceptional characteristics to meet Criterion Consideration G.

Old CE is significant under Criteria A and C. Constructed in 1939, it represents the second phase of campus development and is a product of the New Deal, Public Works Administration (PWA) program. Architecturally, it was designed by Bush-Brown, Gailey, Heffernan & Associates (Jack Rowland and M.L. Jorgensen were designers on the project) and represents the use of the Collegiate Gothic style on campus.

The Stephen C. Hall Building (formerly the Navy ROTC Armory) is significant under Criteria A and C. Constructed in 1924, it represents the second stage of campus development. The building was designed by James L. Skinner and Harold Bush-Brown and is representative of the early Collegiate Gothic style on campus.

Constructed in 1955, the Caddell Building is associated with the mid-twentieth century development of the campus. The building was acquired by the Institute in 1986. It is not significant within the historic educational context of the Institute. The building has been almost entirely reclad.

The Cherry Emerson Building is significant under Criteria A and C. As a mid-twentieth century building, it is representative of a period of post-war growth throughout the University System of Georgia spanning from 1946-1956 known as the System's third phase of development. The Cherry Emerson Building is representative of the Late International Style. The Emerson Building is recommended eligible as part of a proposed International Style National Register of Historic Places District on campus.
<table>
<thead>
<tr>
<th>Facility</th>
<th>Year</th>
<th>Eligibility</th>
<th>District</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facilities/ Garage Warehouse</td>
<td>1948</td>
<td>NOT Eligible for listing - Significance</td>
<td>notch architecturally significant and is not significant to the history and development of the institution.</td>
<td></td>
</tr>
<tr>
<td>President's House</td>
<td>1949</td>
<td>Recommend eligible as contributing to proposed district</td>
<td>Georgia Tech Historic District Expansion</td>
<td>The President's House is significant under Criteria A and C. Constructed in 1949, it is representative of a period of post-war growth throughout the University System of Georgia spanning from 1946-1956 known as the System's third phase of development and is significant as the personal home of Georgia Tech's presidents since it was constructed. The President's House was designed by Mrs. Van Leer and Tombs & Creighton and is representative of the Neoclassical Revival style.</td>
</tr>
<tr>
<td>Brittain Addition</td>
<td>1949</td>
<td>Recommend eligible as contributing to proposed district</td>
<td>Georgia Tech Historic District Expansion</td>
<td>The "T" Room Addition is significant under Criteria A and C. Constructed in 1949, the addition is representative of a period of post-war growth throughout the University System of Georgia spanning from 1946-1956 known as the System's third phase of development. The "T" Room is representative of the Collegiate Gothic style, in keeping with the design of the original Brittain Dining Hall.</td>
</tr>
<tr>
<td>Georgia Tech McCamish Pavilion</td>
<td>1955</td>
<td>NOT Eligible for listing - Integrity</td>
<td></td>
<td>The Alexander Memorial Coliseum is associated with a period of post-war growth throughout the University System of Georgia spanning from 1946-1956 known as the System's third phase of development. The Coliseum is representative of the work of Richard L. Aeck during a System-wide transitional period where the design of campus buildings began to take on an institutional modern design aesthetic. Later additions and alterations (echoed by the name change) has obscured the innovative original design.</td>
</tr>
<tr>
<td>Bradley Connector</td>
<td>1951</td>
<td>Recommend eligible as contributing to proposed district</td>
<td>International Style District</td>
<td>The Bradley building is significant under Criteria A and C. As a mid-twentieth century building, it is representative of a period of post-war growth throughout the University System of Georgia spanning from 1946-1956 known as the System's third phase of development. The Bradley Building is representative of the work of Bush-Brown, Gailey & Heffernan in the International Style within an institutional modern design aesthetic. The Bradley Building is recommended eligible as part of a proposed International Style National Register of Historic Places District on campus.</td>
</tr>
<tr>
<td>Architecture West</td>
<td>1980</td>
<td>Not Currently Eligible - Age</td>
<td>Architecture West does not currently meet eligibility requirements for age. However, it is a significant part of the academic campus and represent an exceptional example of Late Modern academic architecture. Therefore, it should be considered eligible for planning purposes until it can be properly evaluated when it reaches 50 years of age.</td>
<td></td>
</tr>
<tr>
<td>Building Name</td>
<td>Code</td>
<td>Year</td>
<td>Eligibility</td>
<td>Architectural Style</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>------</td>
<td>-------</td>
<td>--------------------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Architecture East</td>
<td>076</td>
<td>1952</td>
<td>Recommend eligible as contributing to proposed district</td>
<td>International Style District</td>
</tr>
<tr>
<td>Judge S Price Gilbert Library</td>
<td>077</td>
<td>1953</td>
<td>Recommend eligible as contributing to proposed district</td>
<td>International Style District</td>
</tr>
<tr>
<td>Howey Physics Building</td>
<td>081</td>
<td>1967</td>
<td>Potentially eligible as contributing to potential district</td>
<td>Late Modern Architecture</td>
</tr>
<tr>
<td>Weber Space Science & Technology Building I</td>
<td>084</td>
<td>1967</td>
<td>Potentially eligible as contributing to potential district</td>
<td>Late Modern Architecture</td>
</tr>
<tr>
<td>Van Leer Building</td>
<td>085</td>
<td>1961</td>
<td>Potentially eligible as contributing to potential district</td>
<td>Late Modern Architecture</td>
</tr>
<tr>
<td>Bunger Henry Building</td>
<td>086</td>
<td>1964</td>
<td>Potentially eligible as contributing to potential district</td>
<td>Late Modern Architecture</td>
</tr>
<tr>
<td>Field Residence Hall</td>
<td>090</td>
<td>1961</td>
<td>Potentially eligible as contributing to potential district</td>
<td>Late Modern Architecture</td>
</tr>
<tr>
<td>Matheson Residence Hall</td>
<td>091</td>
<td>1961</td>
<td>Potentially eligible as contributing to potential district</td>
<td>Late Modern Architecture</td>
</tr>
<tr>
<td>William G. Perry Residence Hall</td>
<td>092</td>
<td>1961</td>
<td>Potentially eligible as contributing to potential district</td>
<td>Late Modern Architecture</td>
</tr>
<tr>
<td>Building Name</td>
<td>Room</td>
<td>Year</td>
<td>Eligibility Category</td>
<td>Architectural Style</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>------</td>
<td>------</td>
<td>---</td>
<td>------------------------------</td>
</tr>
<tr>
<td>John F. Hanson Residence Hall</td>
<td>093</td>
<td>1961</td>
<td>Potentially eligible as contributing to potential district</td>
<td>Late Modern Architecture</td>
</tr>
<tr>
<td>Hopkins Residence Hall</td>
<td>094</td>
<td>1961</td>
<td>Potentially eligible as contributing to potential district</td>
<td>Late Modern Architecture</td>
</tr>
<tr>
<td>Weber Space Science & Technology Building III</td>
<td>098</td>
<td>1967</td>
<td>Potentially eligible as contributing to potential district</td>
<td>Late Modern Architecture</td>
</tr>
<tr>
<td>Harry L. Baker Building</td>
<td>099</td>
<td>1969</td>
<td>Potentially eligible as contributing to potential district</td>
<td>Late Modern Architecture</td>
</tr>
<tr>
<td>Dorothy M Crossland tower</td>
<td>100</td>
<td>1968</td>
<td>NOT Eligible for listing - Integrity</td>
<td></td>
</tr>
<tr>
<td>Montgomery Knight Building</td>
<td>101</td>
<td>1968</td>
<td>Potentially eligible as contributing to potential district</td>
<td>Late Modern Architecture</td>
</tr>
<tr>
<td>Gilbert Hillhouse Boggs Building</td>
<td>103</td>
<td>1970</td>
<td>Potentially eligible as contributing to potential district</td>
<td>Late Modern Architecture</td>
</tr>
<tr>
<td>Facility Management Storage</td>
<td>103A</td>
<td>1971</td>
<td>NOT Eligible for listing - Significance</td>
<td></td>
</tr>
<tr>
<td>John Lewis Student Center</td>
<td>104</td>
<td>1969</td>
<td>Not Eligible - Integrity</td>
<td></td>
</tr>
<tr>
<td>Robert C. Commander Building</td>
<td>105</td>
<td>1969</td>
<td>Potentially eligible as contributing to potential district</td>
<td>Late Modern Architecture</td>
</tr>
<tr>
<td>Fulmer Residence Hall</td>
<td>106</td>
<td>1969</td>
<td>Potentially eligible as contributing to potential district</td>
<td>Late Modern Architecture</td>
</tr>
<tr>
<td>Hefner Residence Hall</td>
<td>107</td>
<td>1969</td>
<td>Potentially eligible as contributing to potential district</td>
<td>Late Modern Architecture</td>
</tr>
<tr>
<td>Armstrong Residence Hall</td>
<td>108</td>
<td>1969</td>
<td>Potentially eligible as contributing to potential district</td>
<td>Late Modern Architecture</td>
</tr>
<tr>
<td>Caldwell Residence Hall</td>
<td>109</td>
<td>1969</td>
<td>Potentially eligible as contributing to potential district</td>
<td>Late Modern Architecture</td>
</tr>
<tr>
<td>Folk Residence Hall</td>
<td>110</td>
<td>1969</td>
<td>Potentially eligible as contributing to potential district</td>
<td>Late Modern Architecture</td>
</tr>
<tr>
<td>Buildings</td>
<td>Year</td>
<td>Type</td>
<td>Significance</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>------</td>
<td>--------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Mason Building</td>
<td>111</td>
<td>1969</td>
<td>Late Modern Architecture</td>
<td>Constructed in 1969, the building's significance is derived from its associations with mid-twentieth century campus development and its institutional late modern design.</td>
</tr>
<tr>
<td>J Allen Couch Building</td>
<td>115</td>
<td>1935</td>
<td>Atlanta School Buildings</td>
<td>The Couch building eligible under Criteria A and C. It is a historic Atlanta school building associated with the residential neighborhood originally located to the north and west of the early Georgia Tech campus. It is representative of the Academic Gothic style. This building was acquired by the Institute in 1975, and is therefore not significant within the historic educational context of the Institute.</td>
</tr>
<tr>
<td>Freeman Residence Hall</td>
<td>117</td>
<td>1972</td>
<td>Late Modern Architecture</td>
<td>Constructed in 1972, the building's significance is derived from its associations with mid-twentieth century campus development and its institutional late modern design.</td>
</tr>
<tr>
<td>Montag Residence Hall</td>
<td>118</td>
<td>1972</td>
<td>Late Modern Architecture</td>
<td>Constructed in 1972, the building's significance is derived from its associations with mid-twentieth century campus development and its institutional late modern design.</td>
</tr>
<tr>
<td>Fitten Residence Hall</td>
<td>119</td>
<td>1972</td>
<td>Late Modern Architecture</td>
<td>Constructed in 1972, the building's significance is derived from its associations with mid-twentieth century campus development and its institutional late modern design.</td>
</tr>
<tr>
<td>NARA Tech way Building</td>
<td>136</td>
<td>1970</td>
<td>NOT Eligible for listing - Significance</td>
<td>The NARA building is not architecturally significant and is not significant to the history or development of the campus.</td>
</tr>
<tr>
<td>Parking and Transportation</td>
<td>156</td>
<td>1980</td>
<td>NOT Eligible for listing - Significance</td>
<td>Parking and Transportation Services building is not architecturally significant and is not significant to the development and history of the campus.</td>
</tr>
<tr>
<td>Grinnell Building</td>
<td>163</td>
<td>1955</td>
<td>NOT Eligible for listing - Significance</td>
<td>The Grinnell building is not architecturally significant and is not significant to the development and history of the campus.</td>
</tr>
<tr>
<td>Building Service Center</td>
<td>164</td>
<td>1975</td>
<td>NOT Eligible for listing - Significance</td>
<td>The Building Service Center is not architecturally significant and is not significant to the history and development of the institution.</td>
</tr>
<tr>
<td>Enterprise Data Management</td>
<td>186</td>
<td>1979</td>
<td>NOT Eligible for listing - Significance</td>
<td>The Enterprise Data Management building is not architecturally significant and is not significant to the history and development of the institution.</td>
</tr>
<tr>
<td>Academy of Medicine</td>
<td>198</td>
<td>1941</td>
<td>Individually Listed (NR: 80001070)</td>
<td>This building is significant to the city in three categories. It is historically significant as the home of Atlanta’s oldest medical society, the Medical Association of Atlanta, established as the Brotherhood of Physicians in the 1850s. Architecturally, the Academy of Medicine is significant for its Neo-Classical design attributed to Philip T. Shutze, though R. Kennon Perry supervised the project. As a central meeting place for the medical society, where members shared ideas, discussed medical techniques and theories for many years, as well as the more recent site of recitals, concerts and small conferences, the Academy of Medicine also possesses cultural significance in the City of Atlanta.</td>
</tr>
</tbody>
</table>
Hefferman House

<table>
<thead>
<tr>
<th>Hefferman House</th>
<th>720</th>
<th>1923/1946</th>
<th>Recommend eligible as contributing to proposed district</th>
<th>International Style District</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heffernan House is associated with the early residential development adjacent to the Georgia Tech campus. It is also significant for its association with Paul Heffernan, who lived in the house for many years while on the faculty of the College of Architecture. The house was constructed as a Craftsman Bungalow/Ranch, but was transformed by Heffernan in 1946 into an International Style residence. Acquired by the Institute in 1995, the house is significant for its association with Heffernan and his International Style design.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3 - Evaluation of Significance and Integrity, 2023 Georgia Tech Historic Resource Survey.
2.4.4 Additional Findings

Twenty-seven additional buildings were identified as being eligible for listing to the National Register. These buildings are significant for their association with campus planning and development and for their architecture as representative of a recognizable style and form. While none appear to be eligible for individual listing, they do appear to contribute to themes organized around common architectural expression and historical development.

- 24 buildings are eligible under Criterion A for their association with the fourth phase of campus development (1957-73) and Criterion C as representative examples of Late Modern Architecture, and
- 3 are eligible under Criterion A for their association with the planning and development of the Atlanta Public School system and Criterion C as representative examples of the Academic Gothic style in Atlanta school buildings.

Late Modern Architecture includes several recognized styles, such as Neo-Formalism, Brutalism, and Functionalism. The buildings identified for their Late Modern architecture were built between 1961 and 1972, a period that is encompassed within the campus’ Fourth Phase of development. These buildings are representative of the period’s architectural expression and campus planning approach. The 24 Late-Modern buildings are as follows:

1. Rich Computer Center 051D
2. Howey Physics Building 081
3. Weber Space Science & Technology Building I 084
4. Van Leer Building 085
5. Bunger Henry Building 086
6. Field Residence Hall 090
7. Matheson Residence Hall 091
8. William G. Perry Residence Hall 092
9. John F. Hanson Residence Hall 093
10. Hopkins Residence Hall 094
11. Weber Space Science & Technology Building III 098
12. Harry L. Baker Building 099
13. Montgomery Knight Building 101
14. Gilbert Hillhouse Boggs Building 103
15. Robert C. Commander Building 105
Three buildings contribute to a theme of historic Atlanta public schools. During the first quarter of the twentieth century, Atlanta Public Schools constructed dozens of school buildings. Many of these schools were designed by some of Atlanta’s most prominent architects, including G. Lloyd Preacher, P. Thornton Marye, and A. Ten Eyck Brown, Edwards & Sayward, and Eugene C. Wachendorff. Architecturally, these school buildings were designed in highly expressive Gothic and Renaissance Revival styles. The three Atlanta Public Schools buildings are as follows:

1. O'Keefe Main Building
2. O'Keefe Gym
3. J Allen Couch Building

Buildings within these two thematic groups are considered eligible, but defining the historic districts they contribute to is not currently recommended.

Late Modern Architecture spans a period of time that includes buildings that are not yet 50 years old. Some buildings on the Georgia Tech Campus that are not 50 years old (and perhaps some that were not surveyed because they are not yet 40 years old) may potentially be identified as eligible Late Modern buildings in future surveys. A historic district, by definition, should encompass all buildings in a given area that are contributing to it. Delineating a Late Modern district in this study would neglect Late Modern buildings that are not yet eligible or were not surveyed.

Delineating a district for the Atlanta public school buildings is also not recommended at this time. The three buildings in this group would be part of a larger, city-wide group of historic Atlanta public schools that has not yet been identified. Should efforts be made to survey this larger group of school buildings, the Georgia Tech resources should certainly be included.
Seventeen of the 85 surveyed buildings are not eligible. These non-eligible buildings are identified as either lacking significance (e.g. non-descript garage and utility buildings), lacking integrity (e.g. buildings that have been largely re-skinned), or are not yet 50 years of age.

2.4.5 Character Areas

As noted above, the current survey of buildings is limited to Board of Regents-owned properties within the Atlanta campus’ boundaries. It should be noted that there is a significant presence of buildings within the campus boundaries that are not owned by the BOR. Approximately bounded by 6th Street, the Connector, Bobby Dodd Way, and the back line of properties just west of Fowler Street, is an area of buildings that are residential in form and owned by various affinity groups, including fraternal and student organizations. Many of these buildings appear to be over 50 years old and may retain their integrity to the degree that they would be considered eligible, perhaps collectively, as a district. For planning purposes, Georgia Tech may consider this area as a Character Area. Many of these affinity groups are an important part of Georgia Tech’s history and development and the buildings themselves are recognizable and significant to Georgia Tech’s collective memory.

A Character Area may be recognized as important to the Campus without imposing controls that are outside of Georgia Tech’s purview. As well, a Character Area designation may inform decisions regarding maintenance and treatment to landscapes, transportation rights-of-way, or even design and planning to adjacent campus areas - areas where Georgia Tech has more control. Additional discussion of Treatment of these areas can be found in Section 3.
2.5 INSTITUTIONAL VALUE OF HISTORIC RESOURCES

To assist campus administrators and planners in distinguishing those resources that are most integral to the history and traditions of the institution from those that simply meet the criteria for inclusion on the National Register, the resources have been further organized by Institutional Value. This process of categorization has been adopted by the Board of Regents as Category 1 - Long Term Preservation and Category 2 - Consideration of Long-Term Preservation.

Resources assigned to Category 1 are elements of the built environment that are worthy of long-term preservation and investment. These are resources that are highly valued by the institution, contribute significantly to its history and campus character, and can be adaptively used to meet the Institute’s educational mission. Category 1 resources meet one or more of the following criteria:

- possess central importance in defining the historic, architectural or cultural character of the institution;
- possess outstanding architectural, engineering, artistic or landscape architectural characteristics;
- represent a major investment of resources, such as materials or energy that should not be wasted;
- possess considerable potential for continuing or adaptive use; and/or
- are highly valued by the institution.

Resources assigned to Category 2 are elements of the built environment that are also worthy of long-term preservation and investment. These are resources that are valued by the institution, contribute to its history and campus character, and have potential to be adaptively used to meet the Institute’s educational mission. Category 2 resources meet one or more of the following criteria:

- possess architectural or aesthetic value but are not central to defining or maintaining the character of the institution;
- are good but not outstanding examples of architectural styles, engineering methods, artistic values or landscape architecture;
- can contribute to the interpretation of the history, development, or tradition of the institution but are not necessary to that interpretation;
- have some potential for continued or adaptive use; and/or are valued by the institution.
Prior to the planning and design of major alterations, Category 1 and 2 buildings should have a completed Historic Structure Report.

The CHPP Guidelines currently only provide for two categories of Institutional Value; however, for the purposes of this plan update, a third and fourth category have been added to distinguish between surveyed resources that are not identified as Category 1 or 2. The 2009 CHPP also used a third and fourth category of Institutional Value. This update further refines these as:

Valued by the institution but not eligible. These resources have lost their historic integrity or are not significant enough for eligibility. They require no further preservation consideration.

No significant institutional value and not eligible. These properties have lost their integrity and have a low potential for productive reuse.

In the current survey, forty-one properties were identified as Category 1 buildings. These include all of the listed historic district buildings (11) and individually listed buildings (2), and eligible buildings to either the proposed Historic District Expansion (18) or proposed International Style District (10).

Twenty-eight buildings are Category 2 buildings and include the properties identified as potentially contributing to a Late Modern Architecture (24) or an Atlanta Public School district (3), as well as Architecture West, which has been identified as likely being eligible as part of the International Style grouping in seven years, when it becomes 50 years old. For planning purposes Architecture West has been identified as having a Category 2 level Institutional Value.

Seven buildings are identified as valued by the institution but not eligible and include the Caddell Building, Crosland Tower, and the Lewis Student Center and other buildings that serve an important campus function but are no longer recognizable for their historic significance.

There are nine buildings that include non-eligible buildings like those along Marietta Street that were acquired outside of the campus’ historic period. The grouping also includes utility buildings that lack architectural or planning significance like the facility garage or softball locker room building.
<table>
<thead>
<tr>
<th>Building Name</th>
<th>GT Building ID</th>
<th>Institutional Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skiles, William Vernon Classroom Building</td>
<td>002</td>
<td>Category 1 - Long-term Preservation</td>
</tr>
<tr>
<td>L. W. Robert Alumni Faculty Building</td>
<td>003</td>
<td>Category 1 - Long-term Preservation</td>
</tr>
<tr>
<td>Smith Residence Hall</td>
<td>006</td>
<td>Category 1 - Long-term Preservation</td>
</tr>
<tr>
<td>Brown Residence Hall</td>
<td>007</td>
<td>Category 1 - Long-term Preservation</td>
</tr>
<tr>
<td>Howell Residence Hall</td>
<td>010</td>
<td>Category 1 - Long-term Preservation</td>
</tr>
<tr>
<td>Harris Residence</td>
<td>011</td>
<td>Category 1 - Long-term Preservation</td>
</tr>
<tr>
<td>Brittain Dining Hall</td>
<td>012</td>
<td>Category 1 - Long-term Preservation</td>
</tr>
<tr>
<td>Cloudman Residence Hall</td>
<td>013</td>
<td>Category 1 - Long-term Preservation</td>
</tr>
<tr>
<td>Harrison Residence Hall</td>
<td>014</td>
<td>Category 1 - Long-term Preservation</td>
</tr>
<tr>
<td>Towers Residence Hall</td>
<td>015</td>
<td>Category 1 - Long-term Preservation</td>
</tr>
<tr>
<td>Glenn Residence Hall</td>
<td>016</td>
<td>Category 1 - Long-term Preservation</td>
</tr>
<tr>
<td>Grant Field</td>
<td>017</td>
<td>Category 1 - Long-term Preservation</td>
</tr>
<tr>
<td>Daniel Labs</td>
<td>022</td>
<td>Category 1 - Long-term Preservation</td>
</tr>
<tr>
<td>OIT Engineering</td>
<td>023A</td>
<td>No Significant Institutional Value</td>
</tr>
<tr>
<td>D.M Smith Building</td>
<td>024</td>
<td>Category 1 - Long-term Preservation</td>
</tr>
<tr>
<td>Chapin Building</td>
<td>025</td>
<td>Category 1 - Long-term Preservation</td>
</tr>
<tr>
<td>Building Name</td>
<td>Category</td>
<td>Status</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>----------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Archibald D. Holland Building</td>
<td>026</td>
<td>Category 1 - Long-term Preservation</td>
</tr>
<tr>
<td>Lyman Hall Building</td>
<td>029A</td>
<td>Category 1 - Long-term Preservation</td>
</tr>
<tr>
<td>William Henry Emerson Building</td>
<td>029B</td>
<td>Category 1 - Long-term Preservation</td>
</tr>
<tr>
<td>French Textile Building</td>
<td>030</td>
<td>Category 1 - Long-term Preservation</td>
</tr>
<tr>
<td>O'Keefe Main Building</td>
<td>033</td>
<td>Category 2 - Consideration for Long-term Preservation</td>
</tr>
<tr>
<td>O'Keefe Gym</td>
<td>033A</td>
<td>Category 2 - Consideration for Long-term Preservation</td>
</tr>
<tr>
<td>O'Keefe Custodial Services Building</td>
<td>033B</td>
<td>No Significant Institutional Value</td>
</tr>
<tr>
<td>Evans Administration Building</td>
<td>035</td>
<td>Category 1 - Long-term Preservation</td>
</tr>
<tr>
<td>Andrew Carnegie Building</td>
<td>036</td>
<td>Category 1 - Long-term Preservation</td>
</tr>
<tr>
<td>Savant Building</td>
<td>038</td>
<td>Category 1 - Long-term Preservation</td>
</tr>
<tr>
<td>Janie A Swann Building</td>
<td>039</td>
<td>Category 1 - Long-term Preservation</td>
</tr>
<tr>
<td>Daniel Guggenheim Building</td>
<td>040</td>
<td>Category 1 - Long-term Preservation</td>
</tr>
<tr>
<td>Engineering Science and Mechanics Building</td>
<td>041</td>
<td>Category 1 - Long-term Preservation</td>
</tr>
<tr>
<td>J.S. Coon Building</td>
<td>045</td>
<td>Category 1 - Long-term Preservation</td>
</tr>
<tr>
<td>Thomas P Hinman Research Building</td>
<td>051</td>
<td>Category 1 - Long-term Preservation</td>
</tr>
<tr>
<td>Hinman Connector</td>
<td>051A</td>
<td>Category 1 - Long-term Preservation</td>
</tr>
<tr>
<td>Calculator Building</td>
<td>051B</td>
<td>Category 1 - Long-term Preservation</td>
</tr>
<tr>
<td>Building Name</td>
<td>Code</td>
<td>Category</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>Old Rich</td>
<td>051C</td>
<td>Category 1 - Long-term Preservation</td>
</tr>
<tr>
<td>Rich Computer Center</td>
<td>051D</td>
<td>Category 2 - Consideration for Long-term Preservation</td>
</tr>
<tr>
<td>Instructional Center</td>
<td>055</td>
<td>Valued but not Eligible</td>
</tr>
<tr>
<td>Groseclose Building</td>
<td>056</td>
<td>Valued but not Eligible</td>
</tr>
<tr>
<td>Industrial and Systems Engineering</td>
<td>057</td>
<td>Valued but not Eligible</td>
</tr>
<tr>
<td>Old Civil Engineering Building</td>
<td>058</td>
<td>Category 1 - Long-term Preservation</td>
</tr>
<tr>
<td>Stephen C Hall Building</td>
<td>059</td>
<td>Category 1 - Long-term Preservation</td>
</tr>
<tr>
<td>John and Joyce Caddell Building</td>
<td>060A</td>
<td>Valued but not Eligible</td>
</tr>
<tr>
<td>Cherry L Emerson Building</td>
<td>066</td>
<td>Category 1 - Consideration for Long-term Preservation</td>
</tr>
<tr>
<td>Facilities/ Garage Warehouse</td>
<td>067</td>
<td>No Significant Institutional Value</td>
</tr>
<tr>
<td>President's House</td>
<td>071</td>
<td>Category 1 - Long-term Preservation</td>
</tr>
<tr>
<td>Brittain Addition</td>
<td>072</td>
<td>Category 1 - Long-term Preservation</td>
</tr>
<tr>
<td>Georgia Tech McCamish Pavilion</td>
<td>073</td>
<td>Valued but not Eligible</td>
</tr>
<tr>
<td>Bradley Connector</td>
<td>074</td>
<td>Category 1 - Long-term Preservation</td>
</tr>
<tr>
<td>Architecture West</td>
<td>075</td>
<td>Category 2 - Consideration for Long-term Preservation</td>
</tr>
<tr>
<td>Architecture East</td>
<td>076</td>
<td>Category 1 - Long-term Preservation</td>
</tr>
<tr>
<td>Judge S Price Gilbert Library</td>
<td>077</td>
<td>Category 1 - Long-term Preservation</td>
</tr>
<tr>
<td>Building Name</td>
<td>Category</td>
<td>Preservation Notes</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>Howey Physics Building</td>
<td>081</td>
<td>Category 2 - Consideration for Long-term Preservation</td>
</tr>
<tr>
<td>Weber Space Science & Technology Building I</td>
<td>084</td>
<td>Category 2 - Consideration for Long-term Preservation</td>
</tr>
<tr>
<td>Van Leer Building</td>
<td>085</td>
<td>Category 2 - Consideration for Long-term Preservation</td>
</tr>
<tr>
<td>Bunker Henry Building</td>
<td>086</td>
<td>Category 2 - Consideration for Long-term Preservation</td>
</tr>
<tr>
<td>Field Residence Hall</td>
<td>090</td>
<td>Category 2 - Consideration for Long-term Preservation</td>
</tr>
<tr>
<td>Matheson Residence Hall</td>
<td>091</td>
<td>Category 2 - Consideration for Long-term Preservation</td>
</tr>
<tr>
<td>William G. Perry Residence Hall</td>
<td>092</td>
<td>Category 2 - Consideration for Long-term Preservation</td>
</tr>
<tr>
<td>John F. Hanson Residence Hall</td>
<td>093</td>
<td>Category 2 - Consideration for Long-term Preservation</td>
</tr>
<tr>
<td>Hopkins Residence Hall</td>
<td>094</td>
<td>Category 2 - Consideration for Long-term Preservation</td>
</tr>
<tr>
<td>Weber Space Science & Technology Building III</td>
<td>098</td>
<td>Category 2 - Consideration for Long-term Preservation</td>
</tr>
<tr>
<td>Harry L. Baker Building</td>
<td>099</td>
<td>Category 2 - Consideration for Long-term Preservation</td>
</tr>
<tr>
<td>Dorothy M Crossland tower</td>
<td>100</td>
<td>Valued but not Eligible</td>
</tr>
<tr>
<td>Montgomery Knight Building</td>
<td>101</td>
<td>Category 2 - Consideration for Long-term Preservation</td>
</tr>
<tr>
<td>Gilbert Hillhouse Boggs Building</td>
<td>103</td>
<td>Category 2 - Consideration for Long-term Preservation</td>
</tr>
<tr>
<td>Facility Management Storage</td>
<td>103A</td>
<td>No Significant Institutional Value</td>
</tr>
<tr>
<td>John Lewis Student Center</td>
<td>104</td>
<td>Valued but not Eligible</td>
</tr>
<tr>
<td>Robert C. Commander Building</td>
<td>105</td>
<td>Category 2 - Consideration for Long-term Preservation</td>
</tr>
<tr>
<td>Building Name</td>
<td>Category</td>
<td>Institutional Value</td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>Fulmer Residence Hall</td>
<td>106</td>
<td>Category 2 - Consideration for Long-term Preservation</td>
</tr>
<tr>
<td>Hefner Residence Hall</td>
<td>107</td>
<td>Category 2 - Consideration for Long-term Preservation</td>
</tr>
<tr>
<td>Armstrong Residence Hall</td>
<td>108</td>
<td>Category 2 - Consideration for Long-term Preservation</td>
</tr>
<tr>
<td>Caldwell Residence Hall</td>
<td>109</td>
<td>Category 2 - Consideration for Long-term Preservation</td>
</tr>
<tr>
<td>Folk Residence Hall</td>
<td>110</td>
<td>Category 2 - Consideration for Long-term Preservation</td>
</tr>
<tr>
<td>Mason Building</td>
<td>111</td>
<td>Category 2 - Consideration for Long-term Preservation</td>
</tr>
<tr>
<td>J Allen Couch Building</td>
<td>115</td>
<td>Category 2 - Consideration for Long-term Preservation</td>
</tr>
<tr>
<td>Freeman Residence Hall</td>
<td>117</td>
<td>Category 2 - Consideration for Long-term Preservation</td>
</tr>
<tr>
<td>Montag Residence Hall</td>
<td>118</td>
<td>Category 2 - Consideration for Long-term Preservation</td>
</tr>
<tr>
<td>Fitten Residence Hall</td>
<td>119</td>
<td>Category 2 - Consideration for Long-term Preservation</td>
</tr>
<tr>
<td>NARA Tech way Building</td>
<td>136</td>
<td>No Significant Institutional Value</td>
</tr>
<tr>
<td>Parking and Transportation Services</td>
<td>156</td>
<td>No Significant Institutional Value</td>
</tr>
<tr>
<td>Grinnell Building</td>
<td>163</td>
<td>No Significant Institutional Value</td>
</tr>
<tr>
<td>Building Service Center</td>
<td>164</td>
<td>No Significant Institutional Value</td>
</tr>
<tr>
<td>Enterprise Data Management</td>
<td>186</td>
<td>No Significant Institutional Value</td>
</tr>
<tr>
<td>Academy of Medicine</td>
<td>198</td>
<td>Category 1 - Long-term Preservation</td>
</tr>
<tr>
<td>Hefferman House</td>
<td>720</td>
<td>Category 1 - Long-term Preservation</td>
</tr>
</tbody>
</table>

Table 4 - Institutional Value, 2023 Georgia Tech Historic Resource Survey.
2.6 HISTORIC LANDSCAPE ARCHITECTURE RESOURCES

All 12 landscapes that were identified in the 2009 CHPP have been surveyed and reevaluated for the CHPP update. Further survey of the campus and recommendations from the CHPP Working Group led to the identification of four additional landscapes for review as potential historic landscapes. Fourteen of the 16 landscapes that were surveyed were found to be at least 40 years old during the year the historic resource survey was conducted (2023). Given their ages, each landscape was evaluated according to the National Register Criteria for Evaluation (See Section 2.3). Two of the 16 landscapes were found to be less than 40 years old and were evaluated for exceptional significance according to the National Register Criteria for Evaluation.

In summary, of the 16 landscapes surveyed, one landscape was previously listed on the GA/NRHP as a contributing resource to the Georgia Tech Historic District. The landscape is Tech Tower Lawn.

The survey identified an additional nine landscapes that are recommended eligible for the GA/NRHP based on their historic associations and level of integrity. These include:

1. Academy of Medicine Garden
2. Architecture (East) Courtyard
3. Glenn-Towers Freshman Quadrangle
4. Brittain Dining Hall Entrance Courtyard
5. Harrison Square
6. President's House Landscape
7. Skiles Courtyard
8. Area 2 Housing Quadrangle
9. Tech Parkway

While some landscape resources are not yet eligible for listing on the GA/NRHP based on their age or they have not yet achieved “exceptional significance,” they are important to the fabric of campus and should be preserved. Preservation Plan Guidelines have anticipated the identification of resources that are significant within the campus’ historic context, but that are not yet eligible. The preservation of these resources from the recent past is encouraged by the BOR and therefore they have been identified during the CHPP survey process. Two landscapes were identified that do not currently meet the requirements for listing on the
National Register, but they are important components of the campus and will likely be eligible when they reach the 50-year milestone. It is recommended that these landscapes be treated as eligible resources for planning purposes. The landscapes are:

1. Mayer Garden
2. Kessler Campanile

Four landscapes were found not to meet the requirements for eligibility for the Georgia/National Register. These include:

1. Grant Field
2. Paul M. Heffernan House Landscape
3. Rose Bowl Field
4. Peters Park/Parking Deck

Table 5 on pages 124-25 summarizes the results of the landscape architecture survey including remarks on the significance, historic associations, and integrity of each resource. Also included in the table is the current eligibility recommendation. Where potential districts have been identified, landscapes that are eligible within these districts are noted.

2.6.1 Condition Rating

During the survey of Georgia Tech’s historic landscape resources, condition issues of each landscape were noted. The assessment of conditions was conducted according to “Level I” requirements established by the University System of Georgia’s Campus Historic Preservation Plans Guidelines.

None of the landscapes surveyed were determined to have a satisfactory (A), seriously defective (D), or failed condition rating (F). Minor defects (B) were identified in nine landscapes. Seven landscapes were determined to be defective (C). The findings of the condition survey of Georgia Tech’s historic resources have been outlined in the table in this section.
The Academy of Medicine’s landscape retains a high level of integrity. The field has been satisfactorily maintained and contains many of the original plant materials, although the town. Building theennis have been removed and replaced with turf. The tennis courts were the result of the work of the school’s athletics program. A landscape, especially in front of the building, serves as a good example of a Classical Revival landscape.

370 Architecture [East] 1952

Landscape of important modern building

The Architecture Building (East) Landscape retains its integrity despite losses of much of the original plant material. Circulation consists of a single, centrally located lawn surrounded by buildings. The landscape retains its location, setting, and spatial relationship with the surrounding buildings.

372 Glenn-Towers Freshman Quadrangle 1941

Significant under Criteria A and C. The landscape is a greenspace occupies former footprint of Old Shop Building which was razed in 1968. The greenspace as Tech’s first greenspace and original entrance to significant for its association with Atlanta’s oldest

373 British Sting Ray Entrance Courtyard 1933

Significant under Criteria B; E; F. Built as an entrance to the Sting Ray and as a view to the landscape, it is an example of postmodern historic landscape.

375 Grant Field 1910

Grant Field is associated with the earliest history of the campus. The 1910 campus maps identify Grant Field. Within the field, the campus’ lawn is a measure of the historic significance of this resource to the campus.

376 Tech Tower Lawn 1912

Significant under Criteria B; D. The lawn was established as Tech’s first greenspace and original entrance to the campus. The lawn also served as a parade ground for the military in the early 1900s.

378 Harrison Square 1908

Greenspace occupies former footprint of Old gymnasium building which was razed in 1918. The greenspace serves as a combination of Tech Tower Lawn and has functioned as a greenspace for the past 10 years. This contributing to the landscape, it is an example of postmodern historic landscape.

379 Stapleton-Hefner House Landscape 1927

Significant as an evolving modern landscape associated with an important campus architect and educator.

<table>
<thead>
<tr>
<th>Property Area</th>
<th>Street Address</th>
<th>Building Name</th>
<th>Significance</th>
<th>Date of Major Renovation and Condition</th>
<th>Anticipated Use</th>
<th>Anticipated Treatment</th>
<th>Style/Typology</th>
<th>Architect/Designer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Athletic Field; Football</td>
<td>352 Harrison Square 1968</td>
<td>372 Glenn-Towers Freshman Quadrangle</td>
<td>Greenspace to service a large residential complex that significant for its association with Atlanta’s oldest historic character</td>
<td>1928</td>
<td>Entrance Courtyard</td>
<td>N/A</td>
<td>Greenspace</td>
<td>Hertz, Adler, and Heffernan</td>
</tr>
<tr>
<td></td>
<td>376 Architecture (East)</td>
<td>377 British Sting Ray Entrance Courtyard</td>
<td>Landscape of important modern building</td>
<td>1933</td>
<td>Grant Field</td>
<td>N/A</td>
<td>Landscape</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>380 Tech Tower Lawn</td>
<td>381 Harrison Square</td>
<td>Landscape, it is an example of postmodern historic landscape</td>
<td>1908</td>
<td>Tech Tower Lawn</td>
<td>N/A</td>
<td>Greenspace</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Site of original campus architect and educator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Mayer Garden

1887

Recommended for inclusion on the National Register of Historic Places.

The Mayer Garden was originally designed as an academic quad for the Classroom Building and as the Olympic Village and as a campus landmark. It was dedicated to the memory of Paul Mayer, a professor of civil engineering at Georgia Tech. The garden includes a large front lawn, a small amphitheater, and a basketball court.

Kessler Campanile

1996

Recommended for inclusion on the National Register of Historic Places.

The Kessler Campanile was designed by architect Ed Daugherty. It was originally intended to be an academic quad for the Classroom Building and as a campus landmark. However, it was later converted into a bell tower and is now used as a bell tower and a campus landmark. The campanile continues to have tennis and basketball courts on its top level.

President's House Landscape

1946

Recommended for inclusion on the National Register of Historic Places.

The President's House Landscape was designed by architect Ed Daugherty. It was originally intended to be an academic quad for the Classroom Building and as a campus landmark. However, it was later converted into a residence hall and is now used as a residence hall and a campus landmark. The landscaping continues to have tennis and basketball courts on its top level.

Peters Park/Parking Deck

1946; 1986

Recommended for inclusion on the National Register of Historic Places.

Peters Park/Parking Deck was designed by architect Ed Daugherty. It was originally intended to be an academic quad for the Classroom Building and as a campus landmark. However, it was later converted into a parking deck and is now used as a parking deck and a campus landmark. The landscaping continues to have tennis and basketball courts on its top level.

Area 2 Housing

1960

Recommended for inclusion on the National Register of Historic Places.

Area 2 Housing was designed by architect Ed Daugherty. It was originally intended to be an academic quad for the Classroom Building and as a campus landmark. However, it was later converted into a residence hall and is now used as a residence hall and a campus landmark. The landscaping continues to have tennis and basketball courts on its top level.

357 Skiles Courtyard

1960

Recommended for inclusion on the National Register of Historic Places.

357 Skiles Courtyard was designed by architect Ed Daugherty. It was originally intended to be an academic quad for the Classroom Building and as a campus landmark. However, it was later converted into a residence hall and is now used as a residence hall and a campus landmark. The landscaping continues to have tennis and basketball courts on its top level.

354 Mayer Garden

1987

Recommended for inclusion on the National Register of Historic Places.

354 Mayer Garden was designed by architect Ed Daugherty. It was originally intended to be an academic quad for the Classroom Building and as a campus landmark. However, it was later converted into a residence hall and is now used as a residence hall and a campus landmark. The landscaping continues to have tennis and basketball courts on its top level.

Means Street and North Tech Parkway (Between Avenue)

1949

Recommended for inclusion on the National Register of Historic Places.

Means Street and North Tech Parkway (Between Avenue) was designed by architect Ed Daugherty. It was originally intended to be an academic quad for the Classroom Building and as a campus landmark. However, it was later converted into a residence hall and is now used as a residence hall and a campus landmark. The landscaping continues to have tennis and basketball courts on its top level.

Late 1960s; 2000s additions of granite retaining walls and boulders to north side of property (as part of a potential East Campus Historic District)

1949

Recommended for inclusion on the National Register of Historic Places.

Late 1960s; 2000s additions of granite retaining walls and boulders to north side of property were designed by architect Ed Daugherty. It was originally intended to be an academic quad for the Classroom Building and as a campus landmark. However, it was later converted into a residence hall and is now used as a residence hall and a campus landmark. The landscaping continues to have tennis and basketball courts on its top level.

The Skiles Historic Structure District

1965

Recommended for inclusion on the National Register of Historic Places.

The Skiles Historic Structure District was designed by architect Ed Daugherty. It was originally intended to be an academic quad for the Classroom Building and as a campus landmark. However, it was later converted into a residence hall and is now used as a residence hall and a campus landmark. The landscaping continues to have tennis and basketball courts on its top level.

Campus Greenspace

19,300 gsf

Recommended for inclusion on the National Register of Historic Places.

Campus Greenspace was designed by architect Ed Daugherty. It was originally intended to be an academic quad for the Classroom Building and as a campus landmark. However, it was later converted into a residence hall and is now used as a residence hall and a campus landmark. The landscaping continues to have tennis and basketball courts on its top level.

Rehabilitation Designed Landscape

Toombs & Creighton Mion Construction

3,980 sf

Recommended for inclusion on the National Register of Historic Places.

Rehabilitation Designed Landscape by Toombs & Creighton Mion Construction was designed by architect Ed Daugherty. It was originally intended to be an academic quad for the Classroom Building and as a campus landmark. However, it was later converted into a residence hall and is now used as a residence hall and a campus landmark. The landscaping continues to have tennis and basketball courts on its top level.

Maintenance Designed Landscape

President's Residence

N/A

Recommended for inclusion on the National Register of Historic Places.

Maintenance Designed Landscape of the President's Residence was designed by architect Ed Daugherty. It was originally intended to be an academic quad for the Classroom Building and as a campus landmark. However, it was later converted into a residence hall and is now used as a residence hall and a campus landmark. The landscaping continues to have tennis and basketball courts on its top level.

Recommended eligible as part of a potential East Campus Historic District and is thus compatible with the historic character of the campus.

Although the Mayer Garden is not yet eligible for the National Register because of age, it is compatible with the historic character of the campus.

The President's House Landscape is recommended for eligibility and is therefore compatible with the historic character of the campus.

The Kessler Campanile continues to be an athletic field, although it no longer maintains its historic appearance. Because of this, it is not eligible as a historic athletic field.

The Scene Historic Landscape is recommended for eligibility and is therefore compatible with the historic character of the campus.

Theathroom Historic Landscape and is thus compatible with the historic character of the campus.

Although the Mayer Garden is not yet eligible for the National Register because of age, it is compatible with the historic character of the campus.

Although the Mayer Garden is not yet eligible for the National Register because of age, it is compatible with the historic character of the campus.

Although the Mayer Garden is not yet eligible for the National Register because of age, it is compatible with the historic character of the campus.

Although the Mayer Garden is not yet eligible for the National Register because of age, it is compatible with the historic character of the campus.

Although the Mayer Garden is not yet eligible for the National Register because of age, it is compatible with the historic character of the campus.

Although the Mayer Garden is not yet eligible for the National Register because of age, it is compatible with the historic character of the campus.

Although the Mayer Garden is not yet eligible for the National Register because of age, it is compatible with the historic character of the campus.

Although the Mayer Garden is not yet eligible for the National Register because of age, it is compatible with the historic character of the campus.

Although the Mayer Garden is not yet eligible for the National Register because of age, it is compatible with the historic character of the campus.

Although the Mayer Garden is not yet eligible for the National Register because of age, it is compatible with the historic character of the campus.

Although the Mayer Garden is not yet eligible for the National Register because of age, it is compatible with the historic character of the campus.

Although the Mayer Garden is not yet eligible for the National Register because of age, it is compatible with the historic character of the campus.

Although the Mayer Garden is not yet eligible for the National Register because of age, it is compatible with the historic character of the campus.

Although the Mayer Garden is not yet eligible for the National Register because of age, it is compatible with the historic character of the campus.

Although the Mayer Garden is not yet eligible for the National Register because of age, it is compatible with the historic character of the campus.

Although the Mayer Garden is not yet eligible for the National Register because of age, it is compatible with the historic character of the campus.

Although the Mayer Garden is not yet eligible for the National Register because of age, it is compatible with the historic character of the campus.

Although the Mayer Garden is not yet eligible for the National Register because of age, it is compatible with the historic character of the campus.

Although the Mayer Garden is not yet eligible for the National Register because of age, it is compatible with the historic character of the campus.

Although the Mayer Garden is not yet eligible for the National Register because of age, it is compatible with the historic character of the campus.

Although the Mayer Garden is not yet eligible for the National Register because of age, it is compatible with the historic character of the campus.

Although the Mayer Garden is not yet eligible for the National Register because of age, it is compatible with the historic character of the campus.

Although the Mayer Garden is not yet eligible for the National Register because of age, it is compatible with the historic character of the campus.

Although the Mayer Garden is not yet eligible for the National Register because of age, it is compatible with the historic character of the campus.

Although the Mayer Garden is not yet eligible for the National Register because of age, it is compatible with the historic character of the campus.
2.7 ARCHAEOLOGICAL RESOURCES

The archaeological sensitivity study identified six areas on the Georgia Tech campus with potential to possess prehistoric and/or historic archaeological resources, singling out areas that could be associated with significant Civil War activity from 1864 (Swanson 2001). Further examination of historic period maps during the 2009 plan update necessitated changing the status of at least one of the probability areas defined as “medium” by the 2001 study.

The Georgia Tech National Register Historic District features a number of nineteenth-century buildings original to the campus. However, some of these early structures are no longer present. The Sanborn Fire Insurance map of 1899 depicts the Lettie Pate Whitehead Evans Administration Building and the French Building and several buildings that are no longer extant. Three structures in particular have the potential to exist as archaeological deposits, the machine shop/foundry, the blacksmith shop, and a well house. All these buildings lie between the Lettie Pate Whitehead Evans Administration Building and the Coon Building, east of the intersection of Cherry Street and Uncle Heinie Way. Examination of aerial photography revealed the blacksmith shop structure existed as late as 1949. Given the size and nature of these buildings, it is likely that archaeological features associated with the structures remain below the ground surface. Therefore, the areas initially defined as Medium Probability Area 3 should be considered an area with a high potential for archaeological deposits significant to the history of the Georgia Institute of Technology.

In addition to established areas of archaeological potential, the Marietta Street and Hemphill Avenue corridors, historically used by streetcars, may possess archaeological resources. Therefore, these corridors should be considered as possessing a moderate potential for archaeological sites. While the programmatic agreement between the state and Federal Highway Administration only covers Georgia Department of Transportation rights-of-way, it also provides a process to identify and evaluate historic streetcar-related resources when encountered.

The Archaeology Sensitivity Map on Page 128 shows the location of identified archaeological sites, National Register Historic districts and archaeological probability areas on the Georgia Tech campus. The map has been updated to reflect the higher sensitivity of the historic core of campus and the addition of historic streetcar corridors.

A total of seven archaeological sites have been previously identified on, or adjacent to campus properties. All of the recorded sites are historic and date to the late nineteenth century or early twentieth century. The
The table below provides a summary of the previously identified sites on and around the Georgia Tech campus.

<table>
<thead>
<tr>
<th>State Site No.</th>
<th>Site Description</th>
<th>NRHP Eligibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>9FU252</td>
<td>Nineteenth-Twentieth-Century Housing Project, Techwood Homes</td>
<td>Listed</td>
</tr>
<tr>
<td>9FU253</td>
<td>Nineteenth-Twentieth-Century Housing Project, Clark Howell Homes</td>
<td>Listed</td>
</tr>
<tr>
<td>9FU334</td>
<td>Nineteenth-Twentieth-Century Steel Truss Bridge</td>
<td>Unknown</td>
</tr>
<tr>
<td>9FU515</td>
<td>Nineteenth-Twentieth-Century Artifact Scatter and Barn</td>
<td>Unknown</td>
</tr>
<tr>
<td>9FU516</td>
<td>Nineteenth-Twentieth-Century Artifact Scatter</td>
<td>Not Eligible</td>
</tr>
<tr>
<td>9FU517</td>
<td>Twentieth-Century Artifact Scatter, Ephraim Ponder House (vicinity)</td>
<td>Not Eligible</td>
</tr>
<tr>
<td>9FU518</td>
<td>Nineteenth-Twentieth Century Artifact Scatter, Fort Hood (vicinity)</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

Table 5 - Archaeological resources within the Georgia Tech Atlanta campus boundaries. New South Associates, 2023.
PART 3

TREATMENT AND USE OF HISTORIC RESOURCES
3.1 INTRODUCTION

This section presents the historic preservation objectives and selected treatment (preservation, rehabilitation, restoration, or reconstruction), requirements for work, and recommended work that corresponds with the defined treatment goals for historic buildings, landscapes, and archaeological sites.

- Requirements for Work - an outline of the laws, regulations, and functional requirements that are applicable to the recommended work.
- Anticipated Levels of Treatment - evaluation of the significance, value, and condition of resources to determine appropriate treatment approach.
- Treatment Guidelines - recommendations and guidance to direct the appropriate treatment of campus historic resources, including the assignment of a Preservation Officer.

3.2 APPLICABLE LEGISLATION & PLANNING DOCUMENTS

The Georgia State Agency Historic Property Stewardship Program requires all state agencies to ensure that historic preservation is fully integrated into the ongoing programs of those agencies. Implemented on July 1, 1998, the following standards and guidelines describe an agency’s responsibility for identifying and protecting historic properties and avoiding unnecessary damage to them.

The primary goals of the Stewardship Program are to ensure that state agencies develop comprehensive plans that result in the preservation, protection, use and maintenance of historic properties for the benefit and enjoyment of present and future generations and to ensure that funding provided by State Agencies is used in a positive manner to attain preservation, protection, use and maintenance of historic properties.

The Board of Regents of the University System of Georgia has delegated the requirements and responsibilities of the State Stewardship Program to each campus under its control or jurisdiction. Therefore each institution within the system is individually responsible for abiding by the requirements of the program.
3.2.1 The Seven Standards of the State Stewardship Program

The seven standards of the State Stewardship Program were developed by the Historic Preservation Division (HPD) to assist state personnel in carrying out their responsibilities under the program. Each standard represents a fundamental task or policy to be implemented by the Institute. The use of these standards will help to ensure that the basic individual components of a preservation program are considered.

Standard One

Each state agency establishes and maintains a historic preservation program that is coordinated by a qualified Preservation Officer and is consistent with and seeks to advance the purposes of the State Agency Historic Property Stewardship Program. The head of each State agency is responsible for the preservation of historic properties owned by the agency.

Standard Two

An agency provides for the timely identification and evaluation of historic properties under agency jurisdiction and/or subject to effect by agency actions.

Standard Three

An agency nominates historic properties under the agency’s jurisdiction to the Georgia Register of Historic Places.

Standard Four

An agency gives historic properties full consideration when planning or considering approval of any action that might affect such properties.

Standard Five

An agency consults with knowledgeable and concerned parties outside the agency about its historic preservation related activities.

Standard Six

An agency manages and maintains historic properties under its jurisdiction in a manner that considers the preservation of their historic, architectural, archaeological, and cultural values.

Standard Seven

An agency gives priority to the use of historic properties to carry out agency missions.
3.2.2 Major Planning Documents

In addition to legislative requirements, treatment and use of Georgia Tech's historic buildings will be guided and influenced by the recommendations of the major planning documents. These documents provide a framework for campus development that responds to the institutional mission statement and planning priorities established by the strategic and academic plans. The most important major planning document is the Strategic Plan which ultimately informs the Institute’s physical master plan. The Institute completed a new strategic plan in 2020.

The Institute’s 2023 Comprehensive Campus Plan, is based on a ten year planning horizon and is the primary document utilized by the Institute for making campus planning and development decisions.

In 2001, Georgia Tech became the first institution in the University System of Georgia to complete a campus historic preservation plan (CHPP). Georgia Tech’s CHPP was updated in 2009. This document is an update to the previous iteration and also has a ten-year planning horizon.

The most granular planning documents for Georgia Tech’s historic assets is the Historic Structure Report. A Historic Structure Report (HSR) provides documentary, graphic, and physical information about an individual property's history and existing condition, and addresses management goals and jurisdictional parameters for the use or re-use of the property. It provides appropriate approaches to treatment based on the Secretary of the Interior’s Guidelines for the Treatment of Historic Properties and outlines a scope of recommended work. Georgia Tech has completed 46 HSRs and has recommended that HSRs be completed for the remaining Category 1 and 2 buildings, 27 in total.

3.2.3 Treatment

For the Institute to continue to utilize its historic building stock to accommodate programmatic needs, various levels of intervention will be required. These activities will span from regular maintenance conducted to slow the processes of deterioration or repair failed components, to more substantial renovations to upgrade building systems or reconfigure interior spaces. In applying any treatment strategy to a historic resource there must be a firm understanding and appreciation for those features that make it unique or significant, referred to as character-defining features.
The State of Georgia has developed standards for the treatment of historic properties that are based on sound preservation philosophy. The standards have been adopted by most state and local governments and their agencies, including the Board of Regents, as the guiding principles and practices for the treatment of significant historic resources within their care.

3.2.4 The State of Georgia Standards for the Treatment of Historic Properties

The State of Georgia Standards for the Treatment of Historic Properties are modeled after the Secretary of the Interior’s Standards and broadly categorizes the treatment of historic resources into four distinct approaches and then provides guiding principles for each. The four treatment approaches established by the standards are:

Preservation focuses on the maintenance and repair of existing historic materials and retention of a property's form as it has evolved over time.

Rehabilitation acknowledges the need to alter or add to a historic property to meet continuing or changing uses while retaining the property's historic character.

Restoration depicts a property at a particular period of time in its history, while removing evidence of other periods.

Reconstruction re-creates vanished or non-surviving portions of a property for interpretive purposes.

A single approach to treatment is not necessarily exclusive of another and often an overall recommendation for treatment will combine aspects of multiple approaches. For example, the interior of a historic building may be rehabilitated to accommodate new use; however, its exterior may be restored to its original appearance.

Because Georgia Tech is a vital and active academic environment and requires that its historic resources continue to be reused and repurposed to advance its mission, Rehabilitation, as defined above, is the treatment approach that will be most widely applied on campus. The Standards for Rehabilitation are provided here as guiding principles and should be reviewed by Institute staff and their consultants when developing reuse strategies for campus buildings.

1. A property will be used as it was historically or be given a new use that requires minimal change to its distinctive materials, features, spaces, and
2. The historic character of a property will be retained and preserved. The removal of distinctive materials or alteration of features, spaces, and spatial relationships that characterize a property will be avoided.

3. Each property will be recognized as a physical record of its time, place, and use. Changes that create a false sense of historical development, such as adding conjectural features or elements from other historic properties, will not be undertaken.

4. Changes to a property that have acquired historic significance in their own right will be retained and preserved.

5. Distinctive materials, features, finishes, and construction techniques or examples of craftsmanship that characterize a property will be preserved.

6. Deteriorated historic features will be repaired rather than replaced. Where the severity of deterioration requires replacement of a distinctive feature, the new feature will match the old in design, color, texture, and, where possible, materials. Replacement of missing features will be substantiated by documentary and physical evidence.

7. Chemical or physical treatments, if appropriate, will be undertaken using the gentlest means possible. Treatments that cause damage to historic materials will not be used.

8. Archeological resources will be protected and preserved in place. If such resources must be disturbed, mitigation measures will be undertaken.

9. New additions, exterior alterations, or related new construction will not destroy historic materials, features, and spatial relationships that characterize the property. The new work shall be differentiated from the old and will be compatible with the historic materials, features, size, scale and proportion, and massing to protect the integrity of the property and its environment.

10. New additions and adjacent or related new construction will be undertaken in a manner that, if removed in the future, the essential form and integrity of the historic property and its environment would be unimpaired.
3.3 ANTICIPATED TREATMENT

To develop a conceptual framework for anticipating the treatment of the surveyed resources, several recent evaluation matrices provided by Georgia Tech were collated and weighed: FCI Score, Introba energy performance audit, “Buildings for consideration” list from the Master Planning effort, and a visual survey of building exteriors conducted under the CHPP effort. Surveys provided the following condition categories: demolished, extensive issues, moderate issues, minor issues, and maintenance needs. Surveys also include additional notation on observed condition and preservation issues.

To compare the different evaluation data, the numerical scoring provided in the FCI Score and Introba energy performance audit data were grouped into four ranks according to their deviations from mean. Master planning inputs and CHPP survey results were also organized into four ranked groups. The four rankings thus provided for each property were averaged to arrive at an Anticipated Treatment of either Stewardship, Maintenance, Rehabilitation, or Renovation.

With few exceptions, there is a strong correlation between high FCI scores, energy hogs, low planning value, and observed deficiencies. To put another way, there is a cyclical relationship between buildings that require costly repair and upgrades, those that exhibit observable signs of deterioration, buildings that are undervalued by the institution, and those that become targets for redevelopment.

For Category 1 buildings with few deficiencies, the anticipated treatment is Stewardship.

- Stewardship is an intentional act of ongoing care for these significant historic resources that do not require major intervention. Buildings in this group should have individual maintenance plans based on a Historic Structures Report. Major planning and design efforts should be conducted according to the Secretary of the Interior’s Standards for the Treatment of Historic Properties.

Category 2 buildings with few deficiencies, anticipated treatment is Maintenance.

- Maintenance, for the purposes of this report, is part of the regular activities of Georgia Tech’s facilities operations for these historic resources that do not require major intervention. Major planning and design efforts should still be planned through a Historic

166 Heffernan House (720) scored poorly on the FCI evaluation because of a large cost per square foot to address facilities estimates, but is an exception because its total project cost is significantly lower than the typical campus buildings.
Structures Report and conducted according to the Secretary of the Interior’s Standards for the Treatment of Historic Properties. Category 1 and 2 buildings that require significant intervention, the anticipated treatment is Rehabilitation.

- Rehabilitation is defined as the act or process of planning and designing compatible uses for a property through repair, alterations, and additions while preserving those portions or features which convey its historical, cultural, or architectural values. Major planning and design efforts should be planned through a Historic Structures Report and conducted according to Georgia and National standards. Buildings identified as having Value but are not Eligible do not need special historic considerations. Based on combined scoring from this study, treatment to these buildings is anticipated to be Maintenance or Renovation, depending on the severity of deficiencies. Buildings that have No Significant Institutional Value are also not eligible and may be slated for Replacement.
<table>
<thead>
<tr>
<th>Building Name</th>
<th>GT Building ID</th>
<th>Anticipated Treatment</th>
<th>Has HSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skiles, William Vernon Classroom Building</td>
<td>002</td>
<td>Rehabilitation</td>
<td></td>
</tr>
<tr>
<td>L. W. Robert Alumni Faculty Building</td>
<td>003</td>
<td>Stewardship</td>
<td>X</td>
</tr>
<tr>
<td>Smith Residence Hall</td>
<td>006</td>
<td>Rehabilitation</td>
<td></td>
</tr>
<tr>
<td>Brown Residence Hall</td>
<td>007</td>
<td>Stewardship</td>
<td></td>
</tr>
<tr>
<td>Howell Residence Hall</td>
<td>010</td>
<td>Stewardship</td>
<td>X</td>
</tr>
<tr>
<td>Harris Residence</td>
<td>011</td>
<td>Stewardship</td>
<td>X</td>
</tr>
<tr>
<td>Brittain Dining Hall</td>
<td>012</td>
<td>Stewardship</td>
<td>X</td>
</tr>
<tr>
<td>Cloudman Residence Hall</td>
<td>013</td>
<td>Stewardship</td>
<td>X</td>
</tr>
<tr>
<td>Harrison Residence Hall</td>
<td>014</td>
<td>Stewardship</td>
<td>X</td>
</tr>
<tr>
<td>Towers Residence Hall</td>
<td>015</td>
<td>Rehabilitation</td>
<td>X</td>
</tr>
<tr>
<td>Glenn Residence Hall</td>
<td>016</td>
<td>Rehabilitation</td>
<td>X</td>
</tr>
<tr>
<td>Grant Field</td>
<td>017</td>
<td>Stewardship</td>
<td>X</td>
</tr>
<tr>
<td>Daniel Labs</td>
<td>022</td>
<td>Stewardship</td>
<td></td>
</tr>
<tr>
<td>OIT Engineering</td>
<td>023A</td>
<td>Replace</td>
<td>X</td>
</tr>
<tr>
<td>D.M Smith Building</td>
<td>024</td>
<td>Rehabilitation</td>
<td>X</td>
</tr>
<tr>
<td>Chapin Building</td>
<td>025</td>
<td>Stewardship</td>
<td>X</td>
</tr>
<tr>
<td>Building Name</td>
<td>Floor</td>
<td>Service Type</td>
<td>Notes</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-------</td>
<td>------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Archibald D. Holland Building</td>
<td>026</td>
<td>Stewardship</td>
<td></td>
</tr>
<tr>
<td>Lyman Hall Building</td>
<td>029A</td>
<td>Stewardship</td>
<td></td>
</tr>
<tr>
<td>William Henry Emerson Building</td>
<td>029B</td>
<td>Stewardship</td>
<td></td>
</tr>
<tr>
<td>French Textile Building</td>
<td>030</td>
<td>Stewardship</td>
<td></td>
</tr>
<tr>
<td>O'Keefe Main Building</td>
<td>033</td>
<td>Cyclic Maintenance</td>
<td>X</td>
</tr>
<tr>
<td>O'Keefe Gym</td>
<td>033A</td>
<td>Cyclic Maintenance</td>
<td>X</td>
</tr>
<tr>
<td>O'Keefe Custodial Services Building</td>
<td>033B</td>
<td>Cyclic Maintenance</td>
<td></td>
</tr>
<tr>
<td>Evans Administration Building</td>
<td>035</td>
<td>Stewardship</td>
<td>X</td>
</tr>
<tr>
<td>Andrew Carnegie Building</td>
<td>036</td>
<td>Stewardship</td>
<td>X</td>
</tr>
<tr>
<td>Savant Building</td>
<td>038</td>
<td>Stewardship</td>
<td>X</td>
</tr>
<tr>
<td>Janie A Swann Building</td>
<td>039</td>
<td>Stewardship</td>
<td></td>
</tr>
<tr>
<td>Daniel Guggenheim Building</td>
<td>040</td>
<td>Rehabilitation</td>
<td></td>
</tr>
<tr>
<td>Engineering Science and Mechanics Building</td>
<td>041</td>
<td>Rehabilitation</td>
<td></td>
</tr>
<tr>
<td>J.S. Coon Building</td>
<td>045</td>
<td>Rehabilitation</td>
<td>X</td>
</tr>
<tr>
<td>Thomas P Hinman Research Building</td>
<td>051</td>
<td>Stewardship</td>
<td></td>
</tr>
<tr>
<td>Hinman Connector</td>
<td>051A</td>
<td>Stewardship</td>
<td>X</td>
</tr>
<tr>
<td>Calculator Building</td>
<td>051B</td>
<td>Rehabilitation</td>
<td>X</td>
</tr>
<tr>
<td>Building Name</td>
<td>Code</td>
<td>Project Type</td>
<td>Mark</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>----------------------</td>
<td>------</td>
</tr>
<tr>
<td>Old Rich</td>
<td>051C</td>
<td>Rehabilitation</td>
<td>X</td>
</tr>
<tr>
<td>Rich Computer Center</td>
<td>051D</td>
<td>Rehabilitation</td>
<td>X</td>
</tr>
<tr>
<td>Instructional Center</td>
<td>055</td>
<td>Cyclic Maintenance</td>
<td></td>
</tr>
<tr>
<td>Groseclose Building</td>
<td>056</td>
<td>Renovation</td>
<td></td>
</tr>
<tr>
<td>Industrial and Systems Engineering</td>
<td>057</td>
<td>Renovation</td>
<td></td>
</tr>
<tr>
<td>Old Civil Engineering Building</td>
<td>058</td>
<td>Stewardship</td>
<td>X</td>
</tr>
<tr>
<td>Stephen C Hall Building</td>
<td>059</td>
<td>Stewardship</td>
<td>X</td>
</tr>
<tr>
<td>John and Joyce Caddell Building</td>
<td>060A</td>
<td>Cyclic Maintenance</td>
<td></td>
</tr>
<tr>
<td>Cherry L Emerson Building</td>
<td>066</td>
<td>Rehabilitation</td>
<td></td>
</tr>
<tr>
<td>Facilities/ Garage Warehouse</td>
<td>067</td>
<td>Replace</td>
<td></td>
</tr>
<tr>
<td>President's House</td>
<td>071</td>
<td>Stewardship</td>
<td>X</td>
</tr>
<tr>
<td>Brittain Addition</td>
<td>072</td>
<td>Stewardship</td>
<td></td>
</tr>
<tr>
<td>Georgia Tech McCamish Pavilion</td>
<td>073</td>
<td>Cyclic Maintenance</td>
<td>X</td>
</tr>
<tr>
<td>Bradley Connector</td>
<td>074</td>
<td>Stewardship</td>
<td></td>
</tr>
<tr>
<td>Architecture West</td>
<td>075</td>
<td>Rehabilitation</td>
<td></td>
</tr>
<tr>
<td>Architecture East</td>
<td>076</td>
<td>Rehabilitation</td>
<td></td>
</tr>
<tr>
<td>Judge S Price Gilbert Library</td>
<td>077</td>
<td>Stewardship</td>
<td>X</td>
</tr>
<tr>
<td>Building Description</td>
<td>Number</td>
<td>Work Type</td>
<td>Status</td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
<td>--------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Howey Physics Building</td>
<td>081</td>
<td>Rehabilitation</td>
<td>X</td>
</tr>
<tr>
<td>Weber Space Science & Technology Building I</td>
<td>084</td>
<td>Rehabilitation</td>
<td></td>
</tr>
<tr>
<td>Van Leer Building</td>
<td>085</td>
<td>Rehabilitation</td>
<td>X</td>
</tr>
<tr>
<td>Bunger Henry Building</td>
<td>086</td>
<td>Rehabilitation</td>
<td></td>
</tr>
<tr>
<td>Field Residence Hall</td>
<td>090</td>
<td>Renovation</td>
<td>X</td>
</tr>
<tr>
<td>Matheson Residence Hall</td>
<td>091</td>
<td>Cyclic Maintenance</td>
<td>X</td>
</tr>
<tr>
<td>William G. Perry Residence Hall</td>
<td>092</td>
<td>Cyclic Maintenance</td>
<td>X</td>
</tr>
<tr>
<td>John F. Hanson Residence Hall</td>
<td>093</td>
<td>Cyclic Maintenance</td>
<td>X</td>
</tr>
<tr>
<td>Hopkins Residence Hall</td>
<td>094</td>
<td>Renovation</td>
<td>X</td>
</tr>
<tr>
<td>Weber Space Science & Technology Building III</td>
<td>098</td>
<td>Rehabilitation</td>
<td></td>
</tr>
<tr>
<td>Harry L. Baker Building</td>
<td>099</td>
<td>Rehabilitation</td>
<td></td>
</tr>
<tr>
<td>Dorothy M Crossland tower</td>
<td>100</td>
<td>Cyclic Maintenance</td>
<td>X</td>
</tr>
<tr>
<td>Montgomery Knight Building</td>
<td>101</td>
<td>Rehabilitation</td>
<td></td>
</tr>
<tr>
<td>Gilbert Hillhouse Boggs Building</td>
<td>103</td>
<td>Rehabilitation</td>
<td></td>
</tr>
<tr>
<td>Facility Management Storage</td>
<td>103A</td>
<td>Replace</td>
<td></td>
</tr>
<tr>
<td>John Lewis Student Center</td>
<td>104</td>
<td>Cyclic Maintenance</td>
<td></td>
</tr>
<tr>
<td>Robert C. Commander Building</td>
<td>105</td>
<td>Cyclic Maintenance</td>
<td></td>
</tr>
<tr>
<td>Building Name</td>
<td>Floor</td>
<td>Type</td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>Fulmer Residence Hall</td>
<td>106</td>
<td>Cyclic Maintenance</td>
<td></td>
</tr>
<tr>
<td>Hefner Residence Hall</td>
<td>107</td>
<td>Cyclic Maintenance</td>
<td></td>
</tr>
<tr>
<td>Armstrong Residence Hall</td>
<td>108</td>
<td>Cyclic Maintenance</td>
<td></td>
</tr>
<tr>
<td>Caldwell Residence Hall</td>
<td>109</td>
<td>Cyclic Maintenance</td>
<td></td>
</tr>
<tr>
<td>Folk Residence Hall</td>
<td>110</td>
<td>Cyclic Maintenance</td>
<td></td>
</tr>
<tr>
<td>Mason Building</td>
<td>111</td>
<td>Cyclic Maintenance</td>
<td></td>
</tr>
<tr>
<td>Freeman Residence Hall</td>
<td>117</td>
<td>Cyclic Maintenance</td>
<td></td>
</tr>
<tr>
<td>Montag Residence Hall</td>
<td>118</td>
<td>Cyclic Maintenance</td>
<td></td>
</tr>
<tr>
<td>Fitten Residence Hall</td>
<td>119</td>
<td>Cyclic Maintenance</td>
<td></td>
</tr>
<tr>
<td>NARA Tech way Building (College of Computing Research)</td>
<td>136</td>
<td>Replace</td>
<td></td>
</tr>
<tr>
<td>Parking and Transportation Services</td>
<td>156</td>
<td>Replace</td>
<td></td>
</tr>
<tr>
<td>Grinnell Building</td>
<td>163</td>
<td>Replace</td>
<td></td>
</tr>
<tr>
<td>Building Service Center</td>
<td>164</td>
<td>Replace</td>
<td></td>
</tr>
<tr>
<td>Enterprise Data Management</td>
<td>186</td>
<td>Replace</td>
<td></td>
</tr>
<tr>
<td>Academy of Medicine</td>
<td>198</td>
<td>Stewardship</td>
<td></td>
</tr>
</tbody>
</table>

Table 6 - Anticipated Treatment
3.4 REHABILITATION TREATMENT
GUIDELINES

As stewards of significant historic buildings, the Institute is faced with the challenge of preserving and maintaining these resources and adapting them for new or continued use. Therefore general treatment guidelines have been developed to aid decision-makers and facilities managers in planning ongoing repair and maintenance of these resources. The treatment guidelines address, in general terms, the most common preservation concerns facing the Institute and its resources. These guidelines discuss preservation philosophy and best-practices for addressing these issues.

3.4.1 Retaining Original Materials and Design Elements

Rehabilitation Standard Six addresses the need to repair or replace historic features of a building and states that when this is necessary, that the new feature match the old in design, color, texture, and where possible, materials. It is recognized that as features age and succumb to the effects of time, replacement may be necessary, however repair should always be considered as a priority over replacement. Changing the material of a feature is generally discouraged as it removes evidence of craftsmanship and construction technique and diminishes the architectural character of the building.

In all instances where historic material is present it should be preserved and retained to the highest degree possible. Wherever replacement material is needed every effort should be made to use in-kind products. Finally, when restoring or replacing historic materials or building elements careful examination of existing conditions as well as a review of historic photographs or documentation should be conducted to ensure accurate replication.

3.4.2 Repair and Replacement of Windows and Doors

Windows and doors are important character-defining features of historic buildings and the decision to replace them should only be considered after it has been determined that repair or restoration is not practical or feasible. The exposure of these elements to weather makes them especially vulnerable to deterioration if they are not properly maintained.
Decreased operability, leaky panes, corrosion, peeling layers of paint, and deteriorated glazing often result as these building components age. The labor-intensive and sometimes costly steps to make repairs can discourage owners or facilities managers from acting, which can result in further and more severe deterioration. The desire to achieve more energy-efficient facilities can also influence the decision to replace historic windows and doors with new units.

The original window frames and sashes of historic buildings were, in most cases, constructed of built-up layers of wood millwork, and composed of individual panes of glass separated by wood muntins. As new technologies became available after 1900 and architectural styles evolved, steel, and later aluminum, windows were more widely used, specifically in commercial and institutional applications. Among the Institute’s historic resources a wide variety of both wood and metal windows are present. Window types range from traditional wood double-hung units to many examples of metal fixed, pivot, projecting, sliding, and casement windows.

The scale, proportion, and detail of these distinct window types contribute to the historic and architectural character of the buildings in which they are installed. In addition, the construction of the window assemblies and the materials used are often indicative of the resources and technologies available at the time of construction. In the case of historic wood windows, these are frequently composed of old-growth lumber and are well constructed, resulting in an assembly that is durable and long lasting if properly maintained. The distinct shadow lines created by the decorative profiles of the window frames and muntins are assets that are rarely captured by replacement units. Therefore, in keeping with the state and national standards, the restoration or repair of historic windows and their components should be a priority in order to preserve these qualities. The repair and retrofitting of historic windows can often be a more economical approach than wholesale replacement.

When the most responsible course of action results in the replacement of historic windows, new units should, at a minimum, match the original material and pane configuration, use true divided lights, and match historic frame and muntin molding profiles as closely as possible. Many manufacturers have stock profiles available that are based on historic precedent or can custom fabricate components to match a historic condition. The use of applied or “snap-on” muntins, are not an appropriate preservation treatment and should be avoided.

Energy efficiency, in many cases, is a driving force for replacing historic windows and doors, but often a reasonable level of efficiency can be achieved through repair and weather-stripping. When it is found that
repair alone cannot achieve the necessary results, consideration should be given to the installation of applied secondary interior glazing or interior storm windows. The installation of interior storm windows is an alternative that maintains the historic character of the building by allowing the historic windows to be preserved, while at the same time providing the benefit of increased insulation. Alternatively, when the application of exterior storm windows is most practical, the storm units should fill the entire opening and not require filler panels or spacers. Frame dimension and muntin and meeting rail location should also match those of the historic windows. In some cases historic windows can be adapted to accept thin insulated glass assemblies by carefully routing out the frames and muntin bars, thus retaining the original wood or metal sash. A number of options to address the thermal efficiency of existing windows are available and should be explored before arriving at a decision to replace historic windows based on energy performance. Finally, careful examination of data provided by window manufacturers should be conducted and the information weighed against emerging studies that show the thermal performance of restored historic windows can, in some cases, be comparable with new units.

Where appropriate, the painted finish of the restored or replacement windows should be based on the historic color palette. As part of any window and door repair or replacement program, a review of historic documentation, or in some cases a finishes analysis, should be conducted to accurately identify and reproduce historic paint colors.

The specific requirements of modern accessibility codes can also impact the ability to retain historic doors and hardware in their original condition. However, most building regulations allow alternative means of compliance for historic buildings, and original doors can often be modified to comply with these requirements. Restoration or repair should be the preferred treatment rather than replacement of these features. In the event replacement of historic doors is necessary, attention should be paid to matching the size, materials, panel configuration, molding profiles, and stile and rail dimensions of the original doors.

Finally, a comprehensive program of regular inspection and annual maintenance is the first and best line of defense against losing historic windows and doors to deterioration. Sufficient resources should be allocated to accommodate this important stewardship activity.

The National Park Service, through its Technical Preservation Services Division, offers a series of Preservation Briefs that provide repair techniques for historic buildings, including topics on historic window repair (NPS Preservation Briefs Nos. 9 and 13).
3.4.3 Historic Masonry Repair and Restoration

Many of the Institute’s historic buildings are constructed of brick with stone accents. A variety of types, colors, and textures of these materials have been used in the construction of these resources. The architectural character of the historic core of campus is largely defined by the red brick exteriors of the Institute’s early academic buildings. The sophistication of masonry detailing is also widely varied among the campus buildings, ranging from simple running bond brickwork on the Institute’s modernist structures to the stone sculpture and tracery found on many of the Gothic-inspired buildings.

In general terms, the mortar used in masonry construction during the nineteenth century consisted primarily of lime putty as a binder, sand aggregate, and water, and in some cases natural cement. These early mortars tend to be relatively soft when compared to later Portland-based mixes. The introduction of Portland cement into general practice occurred at the beginning of the twentieth century. First used as an additive, the proportions of Portland cement in mortar mixes increased until it equaled that of lime putty by the 1930s. The addition of Portland cement was primarily used to accelerate the set time of these early lime-sand mixes but also had the added benefit of producing a stronger mix. It is therefore important to understand the physical make-up of a historic mortar prior to conducting repairs to historic masonry. It has been shown that using repair mortars that have a higher proportion of Portland cement than the original mortar can have detrimental effects on the historic masonry. Given this, it is recommended that prior to conducting a program of masonry repair, the physical properties of the historic mortar should be verified through analysis by a qualified laboratory.

The collection of condition information during the field survey of buildings revealed a variety of masonry and mortar issues. The typical causes of masonry and mortar deterioration can often be traced to the presence of moisture, either from infiltration through failures in the building envelope at the roof, parapet caps, gutters, downspouts, and windows, or from the ground up as a result of poor drainage or soil conditions. Structural settlement and the opening of cracks in the masonry envelope is another way moisture can enter the wall assembly and lead to mortar and masonry problems.

The repair and maintenance of masonry is expected to be an ongoing activity, as the mortar is meant to be the sacrificial component of the masonry wall assembly. Because the masonry envelope is the first line of defense against the elements, it is essential that diligence be exercised when addressing issues of its deterioration. When compromised, wind, water, and pests are able to penetrate the envelope, often leading to
more substantial problems and potentially costly repairs. Where the processes of deterioration result in the complete failure of the masonry and repair is not feasible, replacement units should be materially compatible with adjacent historic fabric and match the original in terms of size, color, graining, tooling, and other visual characteristics.

In addition to natural forces, inappropriate and incompatible treatment can also damage masonry or accelerate deteriorative processes. Harsh chemical or abrasive cleaning, painting, or sealing the masonry with impermeable coatings, the use of incompatible mortars, caulks, or sealants, and poor workmanship all can potentially harm and diminish the character of historic masonry.

Factors to consider when repairing deteriorated masonry and mortar follow:

The repair and maintenance of masonry structures should be undertaken by personnel who are sensitive to preservation philosophy and skilled in required techniques.

Replacement or infill masonry units should tie in seamlessly with adjacent historic fabric and match historic units in size, color, and texture (and species in the case of stone).

Replacement and repair mortars should match the original in composition, strength or hardness, color, and texture. It is recommended that information about the make-up of historic mortars be acquired through a program of mortar analysis.

Caulk or other synthetic compounds should not be used as a pointing material. When used to repoint deteriorated masonry joints, caulk or sealant can trap moisture within the wall assembly. Most historic mortars are breathable and therefore provide a path for water to move to the surface of the wall and evaporate. When this path is disrupted by caulk or sealant, the wall cannot sufficiently dry out. Trapped moisture can lead to accelerated deterioration of the materials that make up the wall assembly. The lifespan of caulks and sealants are short when compared to mortar and, therefore, treatment by this method provides only a temporary masking of the underlying problem. Caulks and sealants were not available historically and when used to point historic masonry often result in an unsightly and artificial aesthetic.

Mortar repair should match the original wall construction in terms of joint width and tooling. Repairs should be neat and the level of workmanship of the repair comparable to that found in the original construction.

When infilling of historic openings is necessary, consideration should be
given to recessing the new masonry slightly and allowing the historic opening to “read” as opposed to bringing the infill flush with the rest of the wall. When infill masonry is not toothed into the adjacent wall, future reversibility is more easily allowed.

Cleaning of masonry should be conducted using the gentlest means possible. A program of cleaning should only be conducted when conditions are obscuring architectural detail or contributing to the deterioration of the masonry. Cleaning buildings solely to achieve a “clean” or “new” appearance should be avoided. Prior to cleaning masonry, test areas or mock-ups should be conducted in inconspicuous locations to evaluate the impact of the procedure and the level of cleaning desired. Chemical and abrasive processes can irreversibly damage historic masonry, therefore, great caution should be exercised when using these techniques.

When considering both painting and waterproofing of historic masonry, it is essential to understand the potential impacts these applications can have on historic masonry. Waterproof coatings, including elastomeric paints that are impermeable, should never be applied above grade to historic masonry buildings. Where masonry was painted originally, a sufficiently permeable finish matching the original in color and sheen should be maintained.

The cracking and separation of historic mortar often occurs as a result of settlement. This condition is usually observed above windows and doors, or at the building corners. Where cracking occurs, it should be monitored for continued movement. If it is found that cracks widen or reappear after repointing, a structural engineer should be consulted to determine the nature of the movement and appropriate remediation.

Consult resources such as National Park Service Preservation Brief #1 prior to embarking on a program of masonry repair or maintenance.

3.4.4 Accessibility and Historic Resources

The physical characteristics of historic buildings and landscapes often make them inaccessible to the disabled. To improve accessibility, it may be necessary to modify circulation routes, floor plans, door openings, and to add non-historic features such as ramps, elevators, or lifts. With this said, it is essential to explore sensitive means of providing these improvements while minimizing the destruction of historic materials or diminishing the character of the resource.
Efforts to modify historic buildings to achieve accessibility should be made with a thorough understanding of the Americans with Disabilities Act Accessibility Guidelines (ADAAG) and the Secretary of the Interior’s Standards for Historic Preservation. Often the Secretary of Interior’s Standards and ADAAG are at odds. To mediate between the requirements of these documents, a careful, pragmatic, and holistic approach that includes the following considerations should be followed:

- Identify the historic significance and character-defining features of the building. Determine the contributing materials, landscapes, spaces, and elements that make the building historic and unique. Knowing and protecting a building’s important features will encourage creative design solutions. Determining a hierarchy of significance within the interior spaces can also help identify areas that can be potentially modified to accommodate accessibility.

- Evaluate the existing and required level of accessibility. What is the current level of accessibility? Should the entire structure or just the main spaces be accessible?

- Identify potential alternatives. Emphasis should be placed on retaining historic materials, maintaining appropriate scales, and visual compatibility, and implementing reversible solutions wherever possible. Solutions may include adding new entrances, rerouting current circulation paths, incorporating modern door hardware into historic door hardware, building new ramps, or even altering programmatic uses of the spaces to accommodate the greatest number of users.

- Engage in consultation with local code officials, facilities personnel, advocates for the disabled, architects, and preservation professionals. Georgia Historic Preservation Division staff can provide technical guidance and assist building owners in determining whether proposed modifications will adversely impact the significance or character of their historic buildings.

Where conflict occurs, ADA contains exceptions to the general accessibility requirements for buildings that are listed on or have been found eligible for the National Register of Historic Places. This exception requires that alterations to a qualified historic building must comply with accessibility rules unless it is determined that compliance would destroy or threaten the historic significance of the building or landscape. Where this is the case, alternative minimum standards may be used.
The alternative minimum standards are as follows:

a. At least one accessible route complying with ADA rules from a site access point to an accessible entrance shall be provided.

b. At least one accessible entrance which is used by the public complying with ADA rules shall be provided.

c. If toilets are provided, then at least one toilet facility complying with ADA requirements shall be provided along an accessible route.

d. Accessible routes from an accessible entrance to all publicly used places on at least the level of the accessible entrance shall be provided whenever practical.

e. Displays and written information, documents, etc., should be located where they can be seen by a seated person.

3.4.5 Additions to Historic Buildings

As Georgia Tech has grown and evolved over time it has had to continually adapt its building stock to accommodate changes in program and capacity. Given that historic buildings make up a significant percentage of the Institute’s facilities, the practice of repurposing buildings for continued use is anticipated to continue.

Adding to historic structures is a delicate process that should be handled with careful evaluation and thought. A sensitive addition should preserve as much historic material and character as possible while differentiating itself from the original structure in a subtle or expressive way. Standard Nine of the Rehabilitation Standards addresses the topic of additions and has been the subject of recent critical review and discussion. On one hand the traditionalist approach strives to blend the addition with its historic host while, alternatively, some prefer that a distinctly modern design be used to clearly differentiate old from new. Both approaches can offer successful solutions if well executed.

These concepts can also be applied beyond individual buildings to the broader issues of new construction and infill.
In general terms, a successful addition project should include the following goals:

To preserve historic features and materials

In considering an addition—either exterior or interior—a careful inventory of historic elements should be made and a firm understanding of the significance of the spaces be established. Recognition of the elements and features that distinguish the building as historic is essential in prioritizing and identifying potential locations for additions. Elements such as doors, windows, decorative trim, brick and mortar, and roof lines are exterior features that are distinct, are often irreplaceable and should be protected. In any addition project there will be some damage to historic fabric; however, efforts should be made to minimize loss of original material. Attaching a structure to the least significant or secondary elevation of a building and/or creating a transparent connecting structure that provides transition between old and new can often minimize this impact.

To preserve historic character

Historic character includes the unique scale, size, and relationship to the surroundings. First, there should be efforts to preserve the historic character of the original structure by not imposing on it. For example, entry sequences should not be blocked or changed, heights of additions should not be taller than original structures, and sight lines should not be altered with the construction of an overbearing addition that sits in front of the original structure. The construction of additional stories onto a building should be set back from the historic façade and as inconspicuous as possible.

To preserve historic significance

Extra care should be taken not to damage the elements, rooms, areas, and spaces that contribute to the historic significance of a structure. The overall architectural significance of a historic building can be preserved, even when an addition is necessary. This requires that the visual qualities that make the building eligible for the GA/NRHP are protected and can be perceived and appreciated by the public. When the design of an addition strives to blend with the historic architecture, strategies should be employed that help differentiate the new work from original, even if this is done in a subtle way.

Careful planning should be conducted prior to executing any project that involves adding to a historic structure, and, as with any restoration or preservation project, consultation with the Historic Preservation Division is encouraged.
3.4.6 Rehabilitating Historic Interiors

To remain a valuable and vital asset to the campus, historic buildings must continue to serve the ever-changing needs of the institution. To accomplish this, historic buildings are often adapted to meet new functional requirements. With this adaptation comes a need to balance the retention of historic features with the desire to make new functionally-driven changes. While the exterior of historic campus buildings are often revered and carefully preserved as changes are made, the interiors are frequently significantly altered. This can result in buildings that appear historic from the outside, but once entered, reveal interior spaces of a totally different character, completely disconnected from the building’s past. It is understood that an academic and teaching environment must not be static, but instead must evolve as technology and the processes of conveying information change. Often with creative design solutions, historic interiors can be modified to accommodate innovation while maintaining historic character. In the same way that the historic exteriors of campus buildings contribute to the unique character of the campus environment, so, too, can historic interior features be significant and convey the history of the institution.

Where historic interiors remain intact, their character-defining features should be preserved. It is important to understand the organizing elements of the historic floor plan, and is often most pragmatic to concentrate preservation efforts in public areas such as lobbies, hallways, and stairways. The hierarchy of spaces within a historic interior is often revealed in the sophistication of finishes and architectural detail. Examples of important character-defining features that may be present within a historic building include the floor plan and the arrangement and volume of interior spaces, staircases, fireplaces, balconies, floors, ceilings, trim elements and wall treatments, structural components, and evidence of historic systems. Often these features are found in the primary or public areas of a building and in some cases may be concealed by later additions such as dropped ceilings and furred walls. Where repair or replacement of historic interior features is necessary, care should be taken to document the existing condition and then execute the repair according to The Secretary of Interior’s Standards and other accepted preservation practices. Material replacement should be made in kind, and the level of craftsmanship should match that of the original.

In some cases it is possible to recapture the spirit of a building’s historic interior when much of the original fabric is no longer present. Generally, this can only be accomplished when historic photographs or drawings of the interior spaces are available. This documentation can be used to guide the design process. Where historic elements have been removed, they can often be replicated, or historic materials and finishes re-
introduced. Also, cues can be taken from the documentation to design new features that are sensitive to the historic condition. When used together, these strategies can provide a new facility that incorporates modern functionality and requirements, yet conveys a sense of history.

Another consideration that can often impact the preservation of historic interiors is the integration of modern building systems. Installing new systems into historic environments requires careful planning and coordination. Due to the nature of these systems, it is most practical that they be installed as part of a comprehensive rehabilitative effort. As a general rule, exposed equipment and components of modern systems should be minimized within a historic interior.

Finally, evidence of historic finishes should be researched and investigated as part of an interior rehabilitation project. Historic finishes are often obscured by subsequent treatments or removed entirely. Restoration or reapplication of historic finishes often provides a dramatic effect within a rehabilitated historic space. In addition to physical evidence, historic photographs can also provide important information about the decorative treatment of historic interiors.

A useful guide to consult when developing strategies for rehabilitating historic interiors is NPS’s Preservation Brief #18.

3.5 TREATMENT TO FEATURES WITHIN HISTORIC DISTRICTS

In addition to carefully considering treatment approaches to historic buildings, Georgia Tech will also need to consider the design and treatment to infrastructure, landscapes and non-historic infill within historic districts.

Contemporary development within (or adjacent to) historic districts should be designed to complement the district’s visual and physical characteristics. A new structure or addition will be compatible if it maintains the overall pattern of development in the area and is visually unobtrusive in terms of scale and massing. Scale is defined in terms of similar or harmonious proportions, especially height and width. Massing is the arrangement of forms, both in plan and elevation, that complement and reflect the district’s character. Unless a new structure is a Reconstruction, it should not duplicate or mimic a historic buildings, structure, or landscape. In other words, each element should be visably of its own time.
3.6 HISTORIC LANDSCAPE TREATMENT
GUIDELINES

3.6.1 Treatment

The following recommendations are made to guide campus planners in the preservation of historic landscape resources, while allowing for the addition of compatible features. Many historic landscape features on campus are not contained in the identified and surveyed designed historic landscapes. Rather, historic landscape features are often more vernacular and consist of, for example, mature trees dotted throughout campus used by students and staff for shade, heavily trafficked thoroughfares, or small-scale features including benches and markers. Although many of these features are not explicitly identified in this CHPP update, the following treatment recommendations should still be considered when making decisions about the future of these vernacular resources.

3.6.2 Open Space and Greenspace

Campus open spaces and greenspaces are often beloved assets of the staff and students allowing for gatherings, recreation, and outdoor activities in pleasant weather. Development pressures at a growing university often lead to the loss of public open space in favor of new buildings, building additions, or parking. Given a limited developable area and high land values, preservation of these spaces on the urban campus is an ongoing duty. Protection of areas that have historically been maintained as open public space are the most critical for preservation. These areas are often associated with campus traditions, are the sites of important campus events, and in many cases have come to be viewed as campus landmarks. Even open spaces and greenspaces that have diminished historic integrity, due to often necessary changes for accessibility, should be maintained to ensure the integrity of the overall campus cultural landscape.

3.6.3 Vegetation

Few things contribute as significantly to the historic landscape as mature vegetation. Accordingly, preservation of historic vegetation is critical to
maintaining the integrity of the campus’s historic landscapes. Existing tree canopy is a character-defining feature of the oldest portions of campus. These trees shade sidewalks, parking lots, and buildings, define the edges of the campus, frame views of buildings, and generally beautify the campus (Figure 96). Developing a tree replacement plan is one way to ensure that historic character is maintained and that the many benefits of mature canopy are retained. Georgia Tech’s 2011 Landscape Master Plan includes a Tree Replacement Plan on page 62 that should be consulted. Per the LMP Tree Replacement Plan, a condition assessment of specimen trees on campus should be performed by a certified arborist. Trees that need increased maintenance or removal should be identified and addressed accordingly. A replacement plan proactively plants replacement trees before existing trees die. Especially when a tree constitutes a historic feature, a replacement tree should be placed in close proximity to original specimens, however maintaining an appropriate tree density is often more important than attempting to replant in an exact location (see LMP). It is most important to maintain the tree cover and species composition of historic green spaces. Where historic landscape plans exist, it is more desirable to replace trees in specified locations.

The Landscape Master Plan has also identified appropriate tree species for the campus landscape (Chapter 6 – Landscape Master Plan). In historic landscapes where no landscape plans are available, regionally native canopy hardwoods and understory trees are recommended to replace lost or declining trees. Where historic landscape plans exist, plant species and locations should be respected, so long as the material has not been found to be an invasive exotic species. In these cases, substitutions of native plant materials with similar character should be used.

New trees should be planted so as to not block views and vistas or campus landmarks. When mature plant material has grown to obscure important views and landmarks, selective pruning may be employed to open up the plant providing greater visibility. This work should be accomplished by a skilled technician and directed by a certified arborist. Historic plant material that is in good health should never be removed just to open up views. These resources should be phased out of the landscape as they decline. If historic landscape plans do not specify the plant location, it should not be replanted to ensure the future visibility of views and campus landmarks.

Along the streets, trees should be spaced at regular intervals to visually reinforce the space and to provide shade. Where overhead utilities exist, small trees should be used to prevent conflicts with the utilities as the trees mature.
Historic plantings should be recreated when proper documentation is available. Original landscape plans and historic photographs should be consulted to restore original designed landscapes on campus. The Infrastructure and Sustainability archives contain original and updated landscape plans for many campus buildings, including for the Glenn-Towers Freshman Quadrangle, the Brittain Dining Hall Entrance Courtyard, Harrison Square, and the Rose Bowl Field. Additionally, the Cherokee Garden Library at the Atlanta History Center contains many original landscape plans for Georgia Tech’s Edward Daugherty-designed landscapes as well as original plans for the Academy of Medicine.

New plantings within the historic district and adjacent to historic landscapes should make use of a planting palette which incorporates regional native plants and plants specified in historic plans for adjacent landscapes. Native species of trees and shrubs are historically appropriate for the oldest campus landscapes and typically require less maintenance than exotic species due to their adaptability. Large turf areas are important for student activities, but turf requires a high level of maintenance. Turf zones which do not serve a recreational function could be transitioned to ground cover or meadow. This measure preserves the open character of lawn without the high level of maintenance.

New plantings consisting of evergreen trees and shrubs may be needed to screen unsightly views of mechanical equipment, service areas, parked cars, or unsightly views of adjacent properties. Parking areas within the core of campus, if not removed, should be screened to minimize their visual impact on the historic character of the campus.

Consideration of historic plant material and historic landscape features should always be incorporated into the planning of future construction projects (Figure 97). Projects such as new buildings, expansion projects, and utility upgrades are potential threats to the preservation of historic landscapes. Minimizing adverse impacts to historic landscape features is best accomplished during the planning process.

3.6.4 Circulation

In the ever-changing landscape, circulation is one resource that often remains unchanged. Where original alignments, widths, and materials remain, efforts should be made to retain these often character-defining landscape characteristics and materials. Where replacement is necessary, widths should be maintained, materials should be duplicated, and the alignment should be retained whenever possible.
Many universities are actively removing vehicular circulation from the core of campus. This can be accomplished within historic landscapes without negatively impacting the integrity of the landscape. Vehicular alignments are easily converted into pedestrian circulation. While materials may need to be replaced, original widths and alignments should be retained (Figure 98). When limiting vehicular circulation in the core of campus, pedestrian routes are often used by service vehicles for delivery, maintenance, etc. Where pedestrian circulation is shared with service vehicles, it is important that service routes are clearly designated and minimized to reduce pedestrian and vehicular conflicts.
3.7 ARCHAEOLOGY TREATMENT GUIDELINES

Archaeological resources are more difficult to identify than resources of the built environment. The concealed nature of the resource often results in the inadvertent exposure of archaeological deposits during development projects. All proposed project areas have some potential for undiscovered resources, so archaeological surveying is essential. During project planning, the Preservation Officer should inform the Institute of mitigation procedures.

Preserving significant archaeological resources at Georgia Tech involves a phased approach which was initiated with the research included in previous sections of the preservation plan. The process of identification, sampling, and evaluation are informed by this initial research. These processes are detailed in the Georgia Standards and Guidelines for Archaeological Investigations, revised in 2019 by the Georgia Council of Professional Archaeologists (GCPA).

Archaeological study in and around the campus has largely been conducted in association with transportation projects. No comprehensive and systematic archaeological survey of the campus has been completed. Areas of archaeological potential have been defined through previous research (Swanson 2001). Areas with high archaeological potential correspond to previously recorded sites, areas where development is low, and areas where past campus buildings and activities were located. Any comprehensive survey should prioritize the high and moderate areas of archaeological potential, as well as assess low potential areas. The process for surveying areas with varying archaeological potential is outlined in GCPA guidance.

Low-impact archaeological assessments with geophysical methods, like ground penetrating radar, could identify potential archaeological deposits prior to ground disturbance occurring at depths eight inches or greater. Geophysical investigations are well suited to identify the remains of early campus buildings and associated activity areas, providing an archaeological context for this significant period for the Institute. Potential subsurface deposits would require excavation for assessment for the National Register of Historic Places, but identification of subsurface anomalies through geophysical means can serve to focus archaeological excavation.

In areas of moderate archaeological potential, archaeological monitoring of large-scale ground disturbance could mitigate any resources exposed during the project. While not considered an acceptable survey method to the GCPA, archaeological monitoring during ground disturbance provides
a means to document and assess the integrity of features that may have significance and prevent impacting deeply buried deposits. Numerous archaeological sites associated with Atlanta’s historic streetcar system have been encountered throughout the city during road construction. This prompted the city, state historic preservation office, and the state Department of Transportation to engage in a programmatic agreement (PA) outlining the process of documenting these types of sites. The process defined in the PA serves as guidance for future development along the former Hemphill Avenue line, that bisected the campus as late as the 1970s.

General awareness of the potential presence of archaeological resources by Institute staff and contractors operating on campus is critical to preservation. Additionally, consideration of archaeological resources in the planning stages, as specified in the University System of Georgia, Board of Regents’ guidelines (2005), of an undertaking will facilitate the identification, evaluation, and possible mitigation of archaeological resources.
PART 4

LOOKING AHEAD
4.1 FUTURE-ELIGIBLE LANDSCAPES AND ARCHITECTURE

4.1.1 Landscapes

A substantial amount of change has occurred throughout the Georgia Tech campus landscape over the last thirty years. These changes and the resulting spaces are not yet considered historic, in that they have not yet reached the fifty-year age threshold required to develop sufficient distance and context to deem an event or trend historically significant by NRHP standards. Nevertheless, these changes, trends, and spaces should be acknowledged, as they represent an important shift in campus planning that will most likely become historically significant and should be documented in future Campus Historic Preservation Plans.

Landscapes and Spaces Promoting the Intersection between Ecology and Technology

Between the 1990s and 2020s, the Georgia Tech campus experienced immense development due to the expanding research environment and general growth. Recognizing the need to make the campus more sustainable and livable in the face of this growth, Georgia Tech published a Campus Master Plan update in 2004 and a Landscape Master Plan in 2010 (revised in 2011). These plans solidified a trend already present on campus to increase the kind and quality of green space that reveal the ecological processes inherent within the landscape and that support a vibrant campus community.

This shift took the form of converting surface parking lots to greenspace and sustainable, LEED-certified buildings, e.g. a redesigned Tech Green and the Clough Undergraduate Learning Commons. It included converting vehicular roads to pedestrian walkways, e.g. Atlantic Promenade and Cherry Street. Additionally, much of the campus was restored to a more natural state, as this June 2006 wayside stated:

“Georgia Tech’s Landscape is Changing: Parkland Plant Community – A landscape that consists of a tall canopy of large trees, a limited and intermittent planting of small trees and shrubs and herbaceous or open ground layer. In some places on campus, you’ll see the landscape becoming more natural with woodlands and meadows and in other places inviting people to gather outdoors for study and recreation, but in all places you’ll see the campus becoming more sustainable. That means more biomass and tree canopy, greater biodiversity, less stormwater runoff into Atlanta’s sewer system, cooler microclimate and reduced dependence on irrigation and pesticides. At Georgia Tech, ecology is joining technology for a ‘greener campus.’”
Most significantly in terms of sustainability, however, the CMPU established the EcoCommons, which “threads together existing and new campus open spaces to create a functional landscape that will improve stormwater retention and thereby reduce the amount of stormwater that flows from the campus into the City’s combined sewer system,” and that also provides “a setting for expanded informal recreational spaces in several locations around the campus” (CMPU 1). In its definition of the EcoCommons, the CMPU looked at the campus landscape comprehensively, as a collection of open spaces connected by circulation networks, rather than as distinct designed landscapes. The Landscape Master Plan took this comprehensive landscape lens a step further by exploring the ways ecology and technology could be interconnected on campus to promote sustainability, livability, biodiversity, and environmental education.

An 8-acre section of the EcoCommons, the campus’ connected, 80-acre open space network, opened in 2021 on the site of the former Beringause Building and surface parking lots. The EcoCommons is composed of three programmed areas: “an area to engage, an area to learn and an area to reflect”167. As an eco-revelatory design, the EcoCommons aims to reveal and educate students, staff, and visitors on the different ecologies and ecological processes of its planting zones: forest, woodland, wetland, meadow, grove, prairie, lawn, and granite outcropping. Several preserved specimen trees and over 600 new trees were planted during the establishment of the EcoCommons. A Stickworks sculpture, titled Chip Off the Ole Block, and three nearby slides inspire people to engage with and play in the landscape (Figure 102 and Figure 103). The EcoCommons additionally consists of pervious walkways and a bioswale with a 500,000 gallon capacity to aid in stormwater runoff reduction (Figure 104). The goal of the EcoCommons to encourage learning, engagement, and reflection is also accomplished through another type of landscape that has become increasingly common on campus and that is discussed below: the commemorative landscape.

“An Area to Reflect:” Commemorative Spaces/Landscapes

Within the EcoCommons, the Unity Plaza occupies the site of the former Pickrick Restaurant, a landmark of the Atlanta civil rights movement (Figure 105). The Pickrick was opened by Lester Maddox, who would later become Georgia governor, in 1948. Following the passage of the Civil Rights Act, Maddox refused to serve three Black theology students – George Willis, Jr., Albert Dunn, and Woodrow T. Lewis – and threatened them with a handgun and pickaxe handles. The students later won the first federal lawsuit filed under the Civil Rights Act with Black attorney Constance Baker Motley. Maddox closed the restaurant rather than

167 https://news.gatech.edu/features/2021/07/grand-opening-ecocommons
desegregate as ordered, and Georgia Tech soon bought the building. After several decades of use as a student career center, Georgia Tech demolished the building in 2008 and the furnished the site with a historical marker.

With the establishment of the EcoCommons, the Pickrick site was turned into the commemorative Unity Plaza. The Georgia Tech article detailing the opening of the EcoCommons aptly describes the Unity Plaza and its symbolism:

“As you approach this section of the EcoCommons, known as the contemplative grove, the pathway follows a granite seat wall. The landscape design now serves a symbolic as well as ecological purpose. As the path narrows, three openings in the wall appear. Just beyond each opening you will see that a piece of the wall has been pushed back. Representing both obstacle and door, these pieces of the wall are each directly in line with a longleaf pine tree (the only longleaf pines in the EcoCommons), symbolizing the three courageous men who broke through the walls of injustice. Three large wooden benches encourage moments of reflection and conversation about how far we have come in advancing racial equality, and how far we still have to go. The footprint of the Pickrick is outlined in the ground by a raised steel edge, and the interior is planted with a subtle groundcover. The vegetation Is in direct contrast to the dense woodland that surrounds the Pickrick site.”

Other commemorative sites and spaces across campus include the Three Pioneers and Continuing the Conversation memorials in Harrison Square, named after Edwin D. Harrison, the sixth president of Georgia Tech who was the first to integrate a university in the South without a court order. The Three Pioneers represents three Black Georgia Tech students who were among the first to integrate the school and who went on to have successful careers, despite not finishing their degrees at Georgia Tech (Figure 106). Continuing the Conversation, installed in 2018, contains three sculptural chairs, two of which contain a seated Rosa Parks in conversation with each other, one at age 42 during the Montgomery Bus Boycott, and one at age 92, her age when she died (Figure 13). The third chair invites passersby to join the conversation. The Olympic Games PeaceTrees Grove, installed on March 23, 1996 between the Boggs Chemistry building and the Manufacturing Research Center, also serves as a commemorative landscape as it was established to bring together the people of the United States and Vietnam. Citizens of both countries came to the Georgia Tech campus to plant the trees, which also symbolized efforts to neutralize minefields in the Quang Tri Province of Vietnam.

While the eco-revelatory and commemorative landscapes mentioned above are not yet historic, they should still be considered as potentially
historically significant in the future during planning efforts.

4.1.2 Architecture

As with its landscapes, Georgia Tech’s campus has changed substantially over the last forty years. Though these changes are not considered historic, we may evaluate their impacts on the recent past. Buildings that are likely to be considered significant historic resources should be acknowledged, as they represent important benchmarks in the evolution of the campus.

Architecture West

Completed in 1980, the Cooper Carry and Associates-designed Architecture West Building (#075) is a bold expression of late-modern architecture. The building employs Brutalist features without being overbearing. The textural interior is peppered with playful volumes and vistas.

Olympic Legacy Buildings

In preparation to the 1996 Olympic Games, Georgia Tech built seven apartment-style residence halls, resulting in housing for 15,000 athletes and nearly doubling the Institute’s undergraduate housing. Tech was also the site of two Olympic athletic venues. McCamish Pavilion (#073), previously Alexander Memorial Coliseum, served as the site of Olympic boxing and Paralympic volleyball. The multi-million dollar Olympic Aquatic Center (#140) was built for swimming, diving, modern pentathlon, synchronized swimming and water polo.

Twenty-First Century Architecture

The five-story, 222,000-square-foot Clough Undergraduate Learning Commons (#166) includes classrooms, labs, academic services and student commons areas. Named in honor of former Institute President G. Wayne Clough, it opened in 2011.

Completed in 2019, the Kendeda Building for Innovative Sustainable Design (#210) is the first building in Georgia to earn Living Building Challenge (LBC) certification, the world’s most ambitious and holistic green building achievement.
4.2 ADMINISTRATION OF THE STATE STEWARDSHIP PROGRAM

4.2.1 Preservation Officer

The State Stewardship Program requires that a qualified Preservation Officer be appointed to manage and maintain the institution’s historic preservation program (See page 131). Georgia Tech has established that the Institute Architect shall be the Preservation Officer.

The preservation officer will work with their team(s) to align the recommendations of the Campus Historic Preservation Plan with the development goals of the Institute’s master planning efforts (most recently, the 2023 Comprehensive Campus Plan). It is the responsibility of the Preservation Officer to incorporate information about historic assets into all planning efforts to ensure informed decisions are made about our historic resources and their retention, maintenance, and continued usefulness. Additionally, the Preservation Officer will make recommendations to help campus leadership prioritize preservation efforts based on the importance of the resource to the campus.

4.2.2 Updating the Campus Historic Preservation Plan

Included in their responsibilities, the Preservation Officer is responsible for the Campus Historic Preservation Plan (CHPP) and its “timely” update. Georgia Tech first developed a CHPP in 2001 and updated that document in 2009. The Institute seeks to update the CHPP every ten years. This current update has been developed with that understanding and provides an evaluation of resources that covers a ten-year period, beginning in 2023. The next update will occur in 2033.
APPENDIX A

CATALOG OF RESOURCES
National Register Listed Category 1 Buildings

<table>
<thead>
<tr>
<th>Building Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lettie Pate Whitehead Evans Administration</td>
<td>4</td>
</tr>
<tr>
<td>Aaron French Textile School</td>
<td>5</td>
</tr>
<tr>
<td>Janie Austell Swann Building</td>
<td>6</td>
</tr>
<tr>
<td>Domenico P. Savant Building</td>
<td>7</td>
</tr>
<tr>
<td>William Henry Emerson Building</td>
<td>8</td>
</tr>
<tr>
<td>Lyman Hall Building</td>
<td>9</td>
</tr>
<tr>
<td>Carnegie Building</td>
<td>10</td>
</tr>
<tr>
<td>Lloyd W. Chapin Building</td>
<td>11</td>
</tr>
<tr>
<td>L.W. Robert Alumni House</td>
<td>12</td>
</tr>
<tr>
<td>David M. Smith Building</td>
<td>13</td>
</tr>
<tr>
<td>John Saylor Coon Building</td>
<td>14</td>
</tr>
<tr>
<td>Academy of Medicine</td>
<td>15</td>
</tr>
<tr>
<td>Grant Field & West Stands (Bobby Dodd Stadium)</td>
<td>17</td>
</tr>
<tr>
<td>Thomas P. Hinman Research Building</td>
<td>30</td>
</tr>
<tr>
<td>Old Civil Engineering Building</td>
<td>31</td>
</tr>
<tr>
<td>O’Keefe Gym</td>
<td>32</td>
</tr>
<tr>
<td>J. L. Daniel Laboratory</td>
<td>33</td>
</tr>
<tr>
<td>Paul H. Heffernan House</td>
<td>34</td>
</tr>
<tr>
<td>John M. Smith Residence Hall</td>
<td>35</td>
</tr>
<tr>
<td>Donigan D. Towers Residence Hall</td>
<td>36</td>
</tr>
<tr>
<td>William H. Glenn Residence Hall</td>
<td>37</td>
</tr>
<tr>
<td>Calculator Building</td>
<td>38</td>
</tr>
<tr>
<td>President’s House</td>
<td>39</td>
</tr>
<tr>
<td>Brittain “T” Room Addition</td>
<td>40</td>
</tr>
<tr>
<td>Thomas P. Hinman Connector Addition</td>
<td>41</td>
</tr>
<tr>
<td>W. C. & Sarah Bradley Connector Building</td>
<td>42</td>
</tr>
<tr>
<td>Architecture East</td>
<td>43</td>
</tr>
<tr>
<td>Judge S. Price Gilbert Memorial Library</td>
<td>44</td>
</tr>
<tr>
<td>Old Rich</td>
<td>45</td>
</tr>
<tr>
<td>William Vernon Skiles Classroom Building</td>
<td>46</td>
</tr>
</tbody>
</table>

National Register Eligible Category 1 Buildings

<table>
<thead>
<tr>
<th>Building Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Archibald D. Holland Building</td>
<td>18</td>
</tr>
<tr>
<td>Daniel C. O’Keefe Building</td>
<td>19</td>
</tr>
<tr>
<td>Stephen C. Hall Building</td>
<td>20</td>
</tr>
<tr>
<td>Julius Brown Residence Hall</td>
<td>21</td>
</tr>
<tr>
<td>Nathaniel E. Harris Residence Hall</td>
<td>22</td>
</tr>
<tr>
<td>Marion L. Brittain Dining Hall</td>
<td>23</td>
</tr>
<tr>
<td>Daniel F. Guggenheim Building</td>
<td>24</td>
</tr>
<tr>
<td>Josiah Cloudman Residence Hall</td>
<td>25</td>
</tr>
<tr>
<td>J. Allen Couch Building</td>
<td>26</td>
</tr>
<tr>
<td>Engineering Science & Mechanics Building</td>
<td>27</td>
</tr>
<tr>
<td>Clark Howell Residence Hall</td>
<td>28</td>
</tr>
<tr>
<td>George W. Harrison, Jr. Residence Hall</td>
<td>29</td>
</tr>
<tr>
<td>National Register Eligible Category 2 Buildings</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>CHERRY L EMERSON BUILDING</td>
<td>48</td>
</tr>
<tr>
<td>BLAKE R. VAN LEER BUILDING</td>
<td>49</td>
</tr>
<tr>
<td>FLOYD FIELD RESIDENCE HALL</td>
<td>50</td>
</tr>
<tr>
<td>KENNETH G. MATHESON RESIDENCE HALL</td>
<td>51</td>
</tr>
<tr>
<td>WILLIAM G. PERRY RESIDENCE HALL</td>
<td>52</td>
</tr>
<tr>
<td>MAJOR JOHN HANSON RESIDENCE HALL</td>
<td>53</td>
</tr>
<tr>
<td>ISSAC S. HOPKINS RESIDENCE HALL</td>
<td>54</td>
</tr>
<tr>
<td>BUNGER-HENRY BUILDING</td>
<td>55</td>
</tr>
<tr>
<td>JOSEPH H. HOWEY PHYSICS BUILDING</td>
<td>56</td>
</tr>
<tr>
<td>PAUL WEBER SPACE, SCIENCE, & TECHNOLOGY 1</td>
<td>57</td>
</tr>
<tr>
<td>PAUL WEBER SPACE, SCIENCE, & TECHNOLOGY 3</td>
<td>58</td>
</tr>
<tr>
<td>MONTGOMERY KNIGHT AEROSPACE ENGINEERING</td>
<td>59</td>
</tr>
<tr>
<td>HARRY L. BAKER BUILDING</td>
<td>60</td>
</tr>
<tr>
<td>ROBERT C. COMMANDER COMMONS</td>
<td>61</td>
</tr>
<tr>
<td>HERMAN K. FULMER RESIDENCE HALL</td>
<td>62</td>
</tr>
<tr>
<td>RALPH A. HEFNER RESIDENCE HALL</td>
<td>63</td>
</tr>
<tr>
<td>ARTHUR H. ARMSTRONG RESIDENCE HALL</td>
<td>64</td>
</tr>
<tr>
<td>HUGH H. CALDWELL RESIDENCE HALL</td>
<td>65</td>
</tr>
<tr>
<td>EDWIN H. FOLK RESIDENCE HALL</td>
<td>66</td>
</tr>
<tr>
<td>JESSE MASON BUILDING</td>
<td>67</td>
</tr>
<tr>
<td>GILBERT HILLHOUSE BOGGS BUILDING</td>
<td>68</td>
</tr>
<tr>
<td>Y. FRANK FREEMAN, JR. RESIDENCE HALL</td>
<td>69</td>
</tr>
<tr>
<td>HAROLD E. MONTAG RESIDENCE HALL</td>
<td>70</td>
</tr>
<tr>
<td>LOUISE M. FITTEN RESIDENCE HALL</td>
<td>71</td>
</tr>
<tr>
<td>RICH COMPUTER CENTER</td>
<td>72</td>
</tr>
<tr>
<td>ARCHITECTURE WEST</td>
<td>73</td>
</tr>
</tbody>
</table>
NATIONAL REGISTER LISTED CATEGORY 1 BUILDINGS
035
LETTIE PATE WHITEHEAD EVANS ADMINISTRATION

Completion Date 1888

Area in Square Feet: 24,400
Architect: Bruce and Morgan
Architectural Style: Romanesque Revival
Institutional Use: Academic Support
National Register: Listed
Contributes to: Georgia Tech HD
Institutional Value: Category 1
Anticipated Treatment: Stewardship
030
AARON FRENCH TEXTILE SCHOOL
Completion Date 1898

Area in Square Feet: 20,300
Architect: Lockwood, Green & Co.
Architectural Style: Romanesque Revival
Institutional Use: Academic Support
National Register: Listed
Contributes to: Georgia Tech HD
Institutional Value: Category 1
Anticipated Treatment: Stewardship
JANIE AUSTELL SWANN BUILDING

Completion Date: 1900

Area in Square Feet: 11,500

Architect: Walter T. Downing

Architectural Style: Romanesque Revival

Institutional Use: Academic Support

National Register: Listed

Contributes to: Georgia Tech HD

Institutional Value: Category 1

Anticipated Treatment: Stewardship
DOMENICO P. SAVANT BUILDING

Completion Date: 1901

Area in Square Feet: 15,800

Architect: Walter T. Downing

Architectural Style: Romanesque Revival

Institutional Use: Academic Support

National Register: Listed

Contributes to: Georgia Tech HD

Institutional Value: Category 1

Anticipated Treatment: Stewardship
029B
WILLIAM HENRY EMERSON BUILDING
Completion Date 1906

Area in Square Feet: 10,300
Architect: Pringle & Smith
Architectural Style: Academic Gothic
Institutional Use: Campus Support
National Register: Listed
Contributes to: Georgia Tech HD
Institutional Value: Category 1
Anticipated Treatment: Stewardship
LYMAN HALL BUILDING

Completion Date 1906

Area in Square Feet: 13,500
Architect: Denny & Wachendorff
Architectural Style: Romanesque Revival
Institutional Use: Campus Support
National Register: Listed
Contributes to: Georgia Tech HD
Institutional Value: Category 1
Anticipated Treatment: Stewardship
036
CARNEGIE BUILDING

Completion Date 1906

Area in Square Feet: 6,800

Architect: Morgan and Dillon

Architectural Style: Neoclassical

Institutional Use: Academic Support

National Register: Listed

Contributes to: Georgia Tech HD

Institutional Value: Category 1

Anticipated Treatment: Stewardship
025
LLOYD W. CHAPIN BUILDING

Completion Date 1910

Area in Square Feet: 4,100

Architect: Francis P. Smith

Architectural Style: Neoclassical

Institutional Use: Academic Support

National Register: Listed

Contributes to: Georgia Tech HD

Institutional Value: Category 1

Anticipated Treatment: Stewardship
L.W. ROBERT ALUMNI HOUSE

Completion Date 1911

Area in Square Feet: 16,100

Architect: Morgan and Dillon

Architectural Style: Romanesque Revival

Institutional Use: Campus Support

National Register: Listed

Contributes to: Georgia Tech HD

Institutional Value: Category 1

Anticipated Treatment: Stewardship
DAVID M. SMITH BUILDING

Completion Date: 1923

Area in Square Feet: 23,000

Architect: Francis P. Smith

Architectural Style: Academic Gothic

Institutional Use: Academics

National Register: Listed

Contributes to: Georgia Tech HD

Institutional Value: Category 1

Anticipated Treatment: Stewardship
045
JOHN SAYLOR COON BUILDING
Completion Date 1920

Area in Square Feet: 40,000
Architect: Francis P. Smith
Architectural Style: Neoclassical
Institutional Use: Academics
National Register: Listed
Contributes to: Georgia Tech HD
Institutional Value: Category 1
Anticipated Treatment: Rehabilitation
Completion Date: 1941

Area in Square Feet: 14,500

Architect: R. Kennon Perry; Hentz Adler & Shutze

Architectural Style: Neoclassical

Institutional Use: Academics

National Register: Listed

Individually Listed: NRIS #80001070

Institutional Value: Category 1

Anticipated Treatment: Stewardship
NATIONAL REGISTER ELIGIBLE CATEGORY 1 BUILDINGS
017
GRANT FIELD & WEST STANDS (BOBBY DODD STADIUM)

Completion Date 1903-14

Institutional Use: Athletics
National Register: Eligible
Contributes to: Historic District Expansion
Institutional Value: Category 1
Anticipated Treatment: Stewardship
ARCHIBALD D. HOLLAND BUILDING

Completion Date 1914

Area in Square Feet: 3,700

Architect: Francis P. Smith

Architectural Style: Romanesque Revival

Institutional Use: Campus Support

National Register: Eligible

Contributes to: HD Expansion

Institutional Value: Category 1

Anticipated Treatment: Stewardship
033
DANIEL C. O’KEEFE BUILDING
Completion Date 1924

Area in Square Feet: **68,100**
Architect: **Marye, Alger & Alger**
Architectural Style: **Academic Gothic**
Institutional Use: **Campus Support**
National Register: **Eligible**
Contributes to Potential: **Atl Public Schools HD**
Institutional Value: **Category 1**
Anticipated Treatment: **Stewardship**
059
STEPHEN C. HALL BUILDING

Completion Date 1924

Area in Square Feet: 6,600
Architect: Dept. Of Arch Faculty
Architectural Style: Academic Gothic
Institutional Use: Academics
National Register: Eligible
Contributes to: HD Expansion
Institutional Value: Category 1
Anticipated Treatment: Stewardship
Area in Square Feet: 11,000
Architect: Skinner, Bush-Brown & Stowell
Architectural Style: Academic Gothic
Institutional Use: Residential
National Register: Eligible
Contributes to: HD Expansion
Institutional Value: Category 1
Anticipated Treatment: Stewardship

Completion Date: 1925

Julius Brown Residence Hall

007
011
NATHANIEL E. HARRIS RESIDENCE HALL

Completion Date 1926

Area in Square Feet: 13,200
Architect: Bush-Brown & Stowell, Gailey Associates
Architectural Style: Academic Gothic
Institutional Use: Residential
National Register: Eligible
Contributes to: HD Expansion
Institutional Value: Category 1
Anticipated Treatment: Stewardship
MARION L. BRITTAINE N DINING HALL

Completion Date: 1928

Area in Square Feet: 14,300

Architect: Bush-Brown & Gailey

Architectural Style: Academic Gothic

Institutional Use: Student Support

National Register: Eligible

Contributes to: HD Expansion

Institutional Value: Category 1

Anticipated Treatment: Stewardship
040
DANIEL F. GUGGENHEIM BUILDING
Completion Date 1930

Area in Square Feet: 14,300
Architect: Bush-Brown & Gailey
Architectural Style: Romanesque Revival
Institutional Use: Academics
National Register: Eligible
Contributes to: HD Expansion
Institutional Value: Category 1
Anticipated Treatment: Rehabilitation
013
JOSIAH CLOUDMAN
RESIDENCE HALL
Completion Date 1931

Area in Square Feet: 13,800
Architect: Bush-Brown, Gailey & Associates
Architectural Style: Academic Gothic
Institutional Use: Residential
National Register: Eligible
Contributes to: HD Expansion
Institutional Value: Category 1
Anticipated Treatment: Stewardship
115
J. ALLEN COUCH BUILDING

Completion Date 1935

Area in Square Feet: 17,500
Architectural Style: Academic Gothic
Institutional Use: Academics
National Register: Eligible
Contributes to Potential: Atl. Public Schools HD
Institutional Value: Category 1
Anticipated Treatment: Rehabilitation
041
ENGINEERING SCIENCE & MECHANICS BUILDING
Completion Date 1938

Area in Square Feet: 24,200
Architect: Bush-Brown & Gailey
Architectural Style: Academic Gothic
Institutional Use: Academics
National Register: Eligible
Contributes to: HD Expansion
Institutional Value: Category 1
Anticipated Treatment: Rehabilitation
CLARK HOWELL RESIDENCE HALL

Completion Date 1939

Area in Square Feet: 14,700

Architect: Bush-Brown & Gailey (Jorgensen)

Architectural Style: Academic Gothic

Institutional Use: Residential

National Register: Eligible

Contributes to: HD Expansion

Institutional Value: Category 1

Anticipated Treatment: Stewardship
GEORGE W. HARRISON, JR. RESIDENCE HALL

Completion Date: 1939

Area in Square Feet: 19,600
Architect: Bush-Brown & Gailey (Jorgensen)
Architectural Style: Academic Gothic
Institutional Use: Residential
National Register: Eligible
Contributes to: HD Expansion
Institutional Value: Category 1
Anticipated Treatment: Stewardship
THOMAS P. HINMAN
RESEARCH BUILDING

Completion Date 1939

Area in Square Feet: 12,800

Architect: Bush-Brown & Gailey (Heffernan)

Architectural Style: International Style

Institutional Use: Academics

National Register: Eligible

Contributes to: International Style HD

Institutional Value: Category 1

Anticipated Treatment: Stewardship
OLD CIVIL ENGINEERING BUILDING
Completion Date: 1939

Area in Square Feet: 17,200
Architect: Bush-Brown & Gailey (Rowland & Jorgensen)
Architectural Style: Academic Gothic
Institutional Use: Academics
National Register: Eligible
Contributes to: HD Expansion
Institutional Value: Category 1
Anticipated Treatment: Stewardship
033A
O’KEEFE GYM

Completion Date 1939

Area in Square Feet: 27,000
Architect: Unknown
Architectural Style: None
Institutional Use: Athletics
National Register: Eligible
Contributes to Potential: Atl. Public Schools HD
Institutional Value: Category 1
Anticipated Treatment: Stewardship
Area in Square Feet: **11,800**

Architect: **Bush-Brown & Gailey**

Architectural Style: **Academic Gothic**

Institutional Use: **Academics**

National Register: **Eligible**

Contributes to Potential: **HD Expansion**

Institutional Value: **Category 1**

Anticipated Treatment: **Stewardship**

Completion Date: **1942**
720
PAUL H. HEFFERNAN HOUSE
Completion Date: 1946

Area in Square Feet: 2,900
Architect: Paul Heffernan
Architectural Style: International Style
Institutional Use: Academic Support
National Register: Eligible
Contributes to Potential: International Style HD
Institutional Value: Category 1
Anticipated Treatment: Stewardship
JOHN M. SMITH RESIDENCE HALL

Completion Date: 1947

Area in Square Feet: 40,100

Architect: Bush-Brown, Gailey & Heffernan

Architectural Style: Academic Gothic

Institutional Use: Residential

National Register: Eligible

Contributes to: HD Expansion

Institutional Value: Category 1

Anticipated Treatment: Rehabilitation
DONIGAN D. TOWERS RESIDENCE HALL

Completion Date 1947

Area in Square Feet: 30,000

Architect: Bush-Brown, Gailey & Heffernan

Architectural Style: Academic Gothic

Institutional Use: Residential

National Register: Eligible

Contributes to: HD Expansion

Institutional Value: Category 1

Anticipated Treatment: Rehabilitation
016
WILLIAM H. GLENN RESIDENCE HALL
Completion Date 1947

Area in Square Feet: 39,100
Architect: Bush-Brown, Gailey & Heffernan
Architectural Style: Academic Gothic
Institutional Use: Residential
National Register: Eligible
Contributes to: HD Expansion
Institutional Value: Category 1
Anticipated Treatment: Rehabilitation
Area in Square Feet: 4,400

Architect: Bush-Brown, Gailey & Heffernan

Architectural Style: International Style

Institutional Use: Campus Support

National Register: Eligible

Contributes to: International Style HD

Institutional Value: Category 1

Anticipated Treatment: Stewardship
071
PRESIDENT’S HOUSE

Completion Date 1949

Area in Square Feet: 8,300

Architect: Toombs and Creighton

Architectural Style: Stripped Classical

Institutional Use: Residential

National Register: Eligible

Contributes to: HD Expansion

Institutional Value: Category 1

Anticipated Treatment: Stewardship
072
BRITTAIN "T" ROOM ADDITION
Completion Date 1949

Area in Square Feet: 18,000
Architect: Bush-Brown, Gailey & Heffernan
Architectural Style: Academic Gothic
Institutional Use: Student Support
National Register: Eligible
Contributes to: HD Expansion
Institutional Value: Category 1
Anticipated Treatment: Stewardship
THOMAS P. HINMAN CONNECTOR ADDITION

Completion Date 1951

Area in Square Feet: 10,900
Architect: Bush-Brown, Gailey & Heffernan
Architectural Style: International Style
Institutional Use: Academics
National Register: Eligible
Contributes to: International Style HD
Institutional Value: Category 1
Anticipated Treatment: Stewardship
W. C. & SARAH BRADLEY CONNECTOR BUILDING

Completion Date 1951

Area in Square Feet: 5,400

Architect: Bush-Brown, Gailey & Heffernan
Architectural Style: International Style
Institutional Use: Campus Support
National Register: Eligible
Contributes to: International Style HD
Institutional Value: Category 1
Anticipated Treatment: Stewardship
076
ARCHITECTURE EAST

Completion Date 1952

Area in Square Feet: 35,800

Architect: Bush-Brown, Gailey & Heffernan

Architectural Style: International Style

Institutional Use: Academics

National Register: Eligible

Contributes to: International Style HD

Institutional Value: Category 1

Anticipated Treatment: Rehabilitation
077
JUDGE S. PRICE GILBERT MEMORIAL LIBRARY

Completion Date 1953

Area in Square Feet: 51,600

Architect: Bush-Brown, Gailey & Heffernan
Architectural Style: International Style
Institutional Use: Academic Support
National Register: Eligible
Contributes to: International Style HD
Institutional Value: Category 1
Anticipated Treatment: Stewardship
<table>
<thead>
<tr>
<th>Area in Square Feet:</th>
<th>4,800</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architect:</td>
<td>A. Thomas Bradbury</td>
</tr>
<tr>
<td>Architectural Style:</td>
<td>International Style</td>
</tr>
<tr>
<td>Institutional Use:</td>
<td>Academics</td>
</tr>
<tr>
<td>National Register:</td>
<td>Eligible</td>
</tr>
<tr>
<td>Contributes to:</td>
<td>International Style HD</td>
</tr>
<tr>
<td>Institutional Value:</td>
<td>Category 1</td>
</tr>
<tr>
<td>Anticipated Treatment:</td>
<td>Stewardship</td>
</tr>
<tr>
<td>Area in Square Feet:</td>
<td>71,300</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Architect:</td>
<td>A. Thomas Bradbury</td>
</tr>
<tr>
<td>Architectural Style:</td>
<td>International Style</td>
</tr>
<tr>
<td>Institutional Use:</td>
<td>Academics</td>
</tr>
<tr>
<td>National Register:</td>
<td>Eligible</td>
</tr>
<tr>
<td>Contributes to:</td>
<td>International Style HD</td>
</tr>
<tr>
<td>Institutional Value:</td>
<td>Category 1</td>
</tr>
<tr>
<td>Anticipated Treatment:</td>
<td>Rehabilitation</td>
</tr>
</tbody>
</table>
NATIONAL REGISTER ELIGIBLE CATEGORY 2 BUILDINGS
CHERRY L EMERSON BUILDING

Completion Date 1959

Area in Square Feet: 8,200

Architect: John W. Cherry

Architectural Style: International Style

Institutional Use: Academics

National Register: Eligible

Contributes to: International Style HD

Institutional Value: Category 1

Anticipated Treatment: Rehabilitation
BLAKE R. VAN LEER BUILDING
Completion Date 1961

Area in Square Feet: 96,200
Architect: Robert & Company
Architectural Style: Late Modern
Institutional Use: Academics
National Register: Eligible
Contributes to: Late Modern Style HD
Institutional Value: Category 2
Anticipated Treatment: Rehabilitation
<table>
<thead>
<tr>
<th>Area in Square Feet:</th>
<th>15,900</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architect:</td>
<td>W. Elliot Dunwoody, Jr.</td>
</tr>
<tr>
<td>Architectural Style:</td>
<td>Late Modern</td>
</tr>
<tr>
<td>Institutional Use:</td>
<td>Residential</td>
</tr>
<tr>
<td>National Register:</td>
<td>Eligible</td>
</tr>
<tr>
<td>Contributes to:</td>
<td>Late Modern Style HD</td>
</tr>
<tr>
<td>Institutional Value:</td>
<td>Category 2</td>
</tr>
<tr>
<td>Anticipated Treatment:</td>
<td>Renovation</td>
</tr>
</tbody>
</table>
KENNETH G. MATHESON RESIDENCE HALL

Completion Date 1961

Area in Square Feet: 21,700
Architect: W. Elliot Dunwoody, Jr.
Architectural Style: Late Modern
Institutional Use: Residential
National Register: Eligible
Contributes to: Late Modern Style HD
Institutional Value: Category 2
Anticipated Treatment: Maintenance
092
WILLIAM G. PERRY
RESIDENCE HALL

Completion Date 1961

Area in Square Feet: 13,500

Architect: W. Elliot Dunwoody, Jr.

Architectural Style: Late Modern

Institutional Use: Residential

National Register: Eligible

Contributes to: Late Modern Style HD

Institutional Value: Category 2

Anticipated Treatment: Maintenance
MAJOR JOHN HANSON RESIDENCE HALL

Completion Date 1961

Area in Square Feet: 14,600

Architect: W. Elliot Dunwoody, Jr.

Architectural Style: Late Modern

Institutional Use: Residential

National Register: Eligible

Contributes to: Late Modern Style HD

Institutional Value: Category 2

Anticipated Treatment: Maintenance
ISSAC S. HOPKINS RESIDENCE HALL
Completion Date 1961

Area in Square Feet: 15,900
Architect: W. Elliot Dunwoody, Jr.
Architectural Style: Late Modern
Institutional Use: Residential
National Register: Eligible
Contributes to: Late Modern Style HD
Institutional Value: Category 2
Anticipated Treatment: Renovation
BUNGER-HENRY BUILDING

Completion Date: 1964

Area in Square Feet: 81,800

Architect: Fince, Alexander, Barnes, Rothschild & Paschal

Architectural Style: Late Modern

Institutional Use: Residential

National Register: Eligible

Contributes to: Late Modern Style HD

Institutional Value: Category 2

Anticipated Treatment: Renovation
081
JOSEPH H. HOWEY
PHYSICS BUILDING
Completion Date 1967

Area in Square Feet: 79,700
Architect: Robert & Company
Architectural Style: Brick Brutalism
Institutional Use: Academics
National Register: Eligible
Contributes to: Late Modern Style HD
Institutional Value: Category 2
Anticipated Treatment: Rehabilitation
084

PAUL WEBER SPACE, SCIENCE, & TECHNOLOGY 1

Completion Date 1967

Area in Square Feet: 29,700

Architect: John W. Cherry

Architectural Style: Brutalism

Institutional Use: Academics

National Register: Eligible

Contributes to: Late Modern Style HD

Institutional Value: Category 2

Anticipated Treatment: TBD
Area in Square Feet: 21,600

Architect: John W. Cherry

Architectural Style: Brutalism

Institutional Use: Academics

National Register: Eligible

Contributes to: Late Modern Style HD

Institutional Value: Category 2

Anticipated Treatment: TBD

Completion Date: 1967
101
MONTGOMERY KNIGHT
AEROSPACE ENGINEERING
Completion Date 1968

Area in Square Feet: 34,900

Architect: John W. Cherry

Architectural Style: Brick Brutalism

Institutional Use: Academics

National Register: Eligible

Contributes to: Late Modern Style HD

Institutional Value: Category 2

Anticipated Treatment: TBD
099
HARRY L. BAKER BUILDING

Completion Date: 1969

Area in Square Feet: 68,400
Architect: Toombs, Amisano and Wells
Architectural Style: Brick Brutalism
Institutional Use: GTRI
National Register: Eligible
Contributes to: Late Modern Style HD
Institutional Value: Category 2
Anticipated Treatment: Rehabilitation
ROBERT C. COMMANDER COMMONS
Completion Date 1969

Area in Square Feet: 4,800
Architect: Unknown
Architectural Style: Late Modern
Institutional Use: Residential
National Register: Eligible
Contributes to: Late Modern Style HD
Institutional Value: Category 2
Anticipated Treatment: Maintenance

Completion Date: 1969

Area in Square Feet: 4,800
Architect: Unknown
Architectural Style: Late Modern
Institutional Use: Residential
National Register: Eligible
Contributes to: Late Modern Style HD
Institutional Value: Category 2
Anticipated Treatment: Maintenance
106
HERMAN K. FULMER
RESIDENCE HALL
Completion Date 1969

Area in Square Feet: 8,800
Architect: James c. Wise; Simpson; Aiken & Associates
Architectural Style: Late Modern
Institutional Use: Residential
National Register: Eligible
Contributes to: Late Modern Style HD
Institutional Value: Category 2
Anticipated Treatment: Maintenance
RALPH A. HEFNER RESIDENCE HALL

Completion Date 1969

Area in Square Feet: 14,900

Architect: Unknown

Architectural Style: Late Modern

Institutional Use: Residential

National Register: Eligible

Contributes to: Late Modern Style HD

Institutional Value: Category 2

Anticipated Treatment: Maintenance
108
ARTHUR H. ARMSTRONG
RESIDENCE HALL
Completion Date 1969

Area in Square Feet: 14,400
Architect: Unknown
Architectural Style: Late Modern
Institutional Use: Residential
National Register: Eligible
Contributes to: Late Modern Style HD
Institutional Value: Category 2
Anticipated Treatment: Maintenance
109
HUGH H. CALDWELL RESIDENCE HALL
Completion Date 1969

Area in Square Feet: 18,800
Architect: Bull & Kenney
Architectural Style: Late Modern
Institutional Use: Residential
National Register: Eligible
Contributes to: Late Modern Style HD
Institutional Value: Category 2
Anticipated Treatment: Maintenance
EDWIN H. FOLK RESIDENCE HALL

Completion Date: 1969

<table>
<thead>
<tr>
<th>Area in Square Feet:</th>
<th>18,800</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architect:</td>
<td>Bull & Kenney</td>
</tr>
<tr>
<td>Architectural Style:</td>
<td>Late Modern</td>
</tr>
<tr>
<td>Institutional Use:</td>
<td>Residential</td>
</tr>
<tr>
<td>National Register:</td>
<td>Eligible</td>
</tr>
<tr>
<td>Contributes to:</td>
<td>Late Modern Style HD</td>
</tr>
<tr>
<td>Institutional Value:</td>
<td>Category 2</td>
</tr>
<tr>
<td>Anticipated Treatment:</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
JESSE MASON BUILDING

Completion Date 1969

Area in Square Feet: 59,000

Architect: L.H. Swayze

Architectural Style: Late Modern

Institutional Use: Academics

National Register: Eligible

Contributes to: Late Modern Style HD

Institutional Value: Category 2

Anticipated Treatment: Rehabilitation
103
GILBERT HILLHOUSE BOGGS BUILDING
Completion Date 1970

Area in Square Feet: 88,000
Architect: Finch, Alexander, Barnes, Rothschild & Paschal
Architectural Style: Brick Brutalism
Institutional Use: Academics
National Register: Eligible
Contributes to: Late Modern Style HD
Institutional Value: Category 2
Anticipated Treatment: Rehabilitation
117
Y. FRANK FREEMAN, JR. RESIDENCE HALL

Completion Date 1972

Area in Square Feet: 16,600
Architect: Bradbury & Associates
Architectural Style: Late Modern
Institutional Use: Residential
National Register: Eligible
Contributes to: Late Modern Style HD
Institutional Value: Category 2
Anticipated Treatment: Maintenance
HAROLD E. MONTAG RESIDENCE HALL

Completion Date 1972

Area in Square Feet: 16,500

Architect: Bradbury & Associates

Architectural Style: Late Modern

Institutional Use: Residential

National Register: Eligible

Contributes to: Late Modern Style HD

Institutional Value: Category 2

Anticipated Treatment: Maintenance
119
LOUISE M. FITTEN RESIDENCE HALL

Completion Date 1972

Area in Square Feet: 18,700
Architect: Bradbury & Associates
Architectural Style: Late Modern
Institutional Use: Residential
National Register: Eligible
Contributes to: Late Modern Style HD
Institutional Value: Category 2
Anticipated Treatment: Maintenance
051D
RICH COMPUTER CENTER

Completion Date 1973

Area in Square Feet: 26,000

Architect: Cooper, Carry & Assc.

Architectural Style: Brick Brutalism

Institutional Use: Campus Support

National Register: Eligible

Contributes to: Late Modern Style HD

Institutional Value: Category 2

Anticipated Treatment: TBD
075
ARCHITECTURE WEST

Completion Date 1980

Area in Square Feet: 35,400
Architect: Cooper, Carry & Assc.
Architectural Style: Brutalism
Institutional Use: Academics
National Register: Not currently eligible due to age but treat as eligible
Institutional Value: Category 2
Anticipated Treatment: Rehabilitation
APPENDIX B

GEORGIA TECH HISTORIC DISTRICT

NATIONAL REGISTER NOMINATION
UNITED STATES DEPARTMENT OF THE INTERIOR
NATIONAL PARK SERVICE

NATIONAL REGISTER OF HISTORIC PLACES
INVENTORY -- NOMINATION FORM

SEE INSTRUCTIONS IN HOW TO COMPLETE NATIONAL REGISTER FORMS
TYPE ALL ENTRIES -- COMPLETE APPLICABLE SECTIONS

1 NAME

HISTORIC:
The Historic District of the Georgia Institute of Technology

AND/OR COMMON:
The Old Campus of Georgia Tech

2 LOCATION

STREET & NUMBER
225 North Avenue

CITY.
Atlanta

STATE
Georgia

LOCATION OF LEGAL DESCRIPTION

COURTHOUSE, REGISTRY OF DEEDS, ETC.
Office of the Vice-President for Finance, Georgia Tech

STREET & NUMBER
225 North Avenue

CITY.
Atlanta

STATE
Georgia

3 CLASSIFICATION

CATEGORY
X DISTRICT

OWNERSHIP
X PUBLIC

STATUS
X OCCUPIED

PRESENT USE
X EDUCATIONAL

IN PROCESS

PRIVATE

WORK IN PROGRESS

OTHER:

ACCESSIBLE

PUBLIC ACQUISITION

YES: RESTRICTED

X SCIENTIFIC

INDUSTRIAL

IN PROCESS

BEING CONSIDERED

IN PROCESS

UNOCCUPIED

NO

WORK IN PROGRESS

4 OWNER OF PROPERTY

NAME
Georgia Institute of Technology

STREET & NUMBER
225 North Avenue

CITY.
Atlanta

STATE
Georgia

5 LOCATION OF LEGAL DESCRIPTION

COURTHOUSE, REGISTRY OF DEEDS, ETC.
Office of the Vice-President for Finance, Georgia Tech

STREET & NUMBER
225 North Avenue

CITY.
Atlanta

STATE
Georgia

6 REPRESENTATION IN EXISTING SURVEYS

TITLE

DATE

DEPOSITORY FOR SURVEY RECORDS

CITY.
Atlanta

STATE
Georgia
The Historic District of the Georgia Institute of Technology, is situated on and around the crest of "the Hill", the highest elevation of the school's original nine-acre campus. Comprised of twelve buildings described in greater detail below, the old campus Historic District is an attractively landscaped cluster of mixed-period classroom, dormitory and administrative brick buildings. The "random" siting of these structures around the centrally positioned Administration Building (Old Academic Building) has created urban spaces that are at once intimate and stimulating and seldom found today. Hundred year-old trees shade these red brick structures and enhance the sense of spacial enclosure created between buildings. An asphalt roadway, Uncle Heinie Way, wraps itself around the Administration Building forming a "loop" and provides both service and vehicular access to the buildings in this portion of the Campus. A new plaza, Harrison Square, (1968), which has both a hard surface of brick and concrete as well as an open green space, was created after the demolition of the Old Shop, a near-twin to the adjacent Administration Building. The old campus is defined by North Avenue on the South, Grant Field, a 55,000 seat football stadium on the East, Third Street on the North and Cherry Street on the West.

ADMINISTRATION (OLD ACADEMIC) BUILDING

Bruce and Morgan, Architects

1888

A good example of the work of the well-known Atlanta architectural firm of Bruce and Morgan, the present Georgia Tech Administration Building is the focal point of the Old Campus. Designed to serve as an "Academic Building" this neo-Romanesque inspired Victorian red brick structure remains as one of the tallest buildings on the campus. Four stories high it appears taller due to the fact that not only is it sited on the highest elevation, but it also has a seven-story-high central tower topped with a high pitched roof. The front facade of the Administration Building is representative of the general architectural composition of the facades of this building. In mass, the front elevation is composed as a central four-story block with hipped roof and tall central tower that projects from the face of the building so as to create a porch on the main floor. This "central block" is then flanked by two side extensions of the building, the left one, treated in a late Romanesque-like manner has a front end gable with tourelles while the right side is treated as a simple side wing with pitched roof and a pedimented gable dormer. The windows in all the blocks are symmetrically placed with respect to their particular block and all are of the 1/1 variety, all windows are set in simple, rectangular wooden frames with the exception of the third floor windows in the main block of the building where the tops of the windows are rounded off to appear arched. The central entranceway is a metal storefront-type glass door set under a double Romanesque arch in the tower of the building. These arches are supported by brick piers on either end and by a single, distinctive, pink marble column at midpoint. Above the arches, on both the second and third floors are windows set in groups of three; this pattern is continued on the fourth floor but here the windows are topped with a round arch divided vertically into three glass panels. The tower continues to the sixth floor when there are three small 1/1 windows set adjacent to one another. Above this point begins the elaborate brick cornice of the tower with its corner tourelles and central gable-end also flanked by turrets with conical "candle-snuffer" roofs; the gable is broken only by a small semi-circular three-part window. In front of the cornice is suspended the large neon letters spelling out "TECH" which replaced earlier light bulb version installed in the nineteen twenties. The tower is topped by a high pitched slate roof.
THE CARNEGIE BUILDING
1906-1907

Located immediately adjacent to the east side of the present Administration Building (1888) the Carnegie Building served Georgia Tech as its first Library. Erected under the auspices of the Carnegie Corporation, this two-story red brick building is a good example of the Beaux-Arts Classical style so popular with the Carnegie Foundation for library facilities. The front elevation is divided into three parts, a typical arrangement for this style, with the central portion, serving as an entrance, being brought forward for visual emphasis on this part of the facade. This entrance, strictly classical in derivation, has a two-story portico of red brick with two limestone ionic columns in antis, both of which rest on large limestone and brick bases; the cornice above these columns bears a plaque of cast bronze inscribed with the words "Carnegie Building" and is flanked by two limestone swags. Above the cornice and set into the limestone-coped brick parapet wall is a large cut stone slab bearing the words "Georgia School of Technology" and flanked on both sides and top by highly decorative cartouches. The doorway, set against the recessed wall of the entrance portico, consists of a set of metal-framed double glass doors that are inserted into an elaborately carved archway whose keystone contains a sculpted face from which emanates swags that run across the brick wall above. The arch is infilled above the doors by a Roman bath-inspired window. On the second floor, above the front door and separated from it by a band course of limestone, is a double window with a single window pane that is set into a very heavy stone frame; this window is flanked by a similar, though single, window on each side. The windows across the remainder of the facade run through both of the building's two stories; there are three such windows in the facade to either side of the projecting entrance bay. These windows are separated by brick pilasters while the edges of the building are defined by larger, giant-order pilasters of brick.

The Carnegie Building, serving initially as a library was designed to house all of Tech's library needs in a single facility containing two small reading rooms and stacks to accommodate 20,000 books. The facility rapidly outgrew its usefulness due to its space limitations and by 1960 had been remodeled by Georgia Tech, at a cost of $90,000, for use as offices by both the Vice-President of Academic Affairs and the President of the Institute.

LYMAN HALL LABORATORY OF CHEMISTRY
1905

Built in 1905, the Lyman Hall Laboratory of Chemistry is a two-story red brick building located directly behind the Carnegie Building (1906) and adjacent to the A. French Building (1898) on the Old Campus of Georgia Tech. Built utilizing mill construction, the Lyman Hall Lab stands as one of the most interesting buildings of the Old Campus, especially when compared to those around it; contrasting with the plain, characterless facades of the French and Knowles Buildings, Lyman Hall is intriguing in that hidden behind its small, almost European-scale front facade is a rather large, laboratory
facilities which for its day could not be considered to be lacking in any way.

Executed in a neo-Romanesque revival style, Lyman Hall is five bays in width, with each bay separated by giant-order pilasters which rest on a common marble and brick base; the middle three bays project slightly so as to make the centrally located entrance more prominent. The entrance to the building is set back five feet under a shallow arch that has a decorative terra-cotta keystone and is set on elaborate terra-cotta pilaster capitals; the doorway consists of a pair of large paneled glass and wood doors simply treated. Above this entrance and set between the two giant-order pilasters of the center bay of the building, is a large plaque, executed in terra-cotta, which bears the name of the building. The first floor windows, of the 1/1 variety are typical of the times and are set in simple wooden frames utilizing the marble coping of the giant-order pilaster base as sills. The lintels of the windows are more ornate, however, and use a jack arch that is terminated on top by a long strip of terra-cotta molding that at each end terminates in a volute. The windows of the first floor, like those of the second floor, are set in pairs. Second floor windows are also of the 1/1 variety, possess marble sills and simple wooden frames but unlike the first floor windows are fabricated with the upper halves rounded off so as to completely infill the neo-Romanesque round arch lintels. Each arch, at its spring point, rests on simple terra-cotta pilaster capitals that are set in flush with the facade. The cornice of Lyman Hall is classically inspired, and consists of two narrow moldings, a plain entablature, all of which is topped by dentil molding above which the eave projects on consoles. The pedimented gable of the building also possesses the same dentil molding and console supported eaves; the roof of Lyman Hall is a low-rise hipped roof and is covered in slate.

On the interior, the Lyman Hall Chemistry Labs have received only one major renovation, that one following the disastrous Winecroft Hotel fire in Atlanta which caused a crackdown in fire-code enforcement and thus produced changes in this building. Due to the fact that dangerous organic chemistry labs were being held in this structure, all open stairwells were walled up and both heavy metal fire doors and a sprinkler system were added.

The first and second floors of the building house Chemistry related activities while the basement of the building is currently being used by an Air Force ROTC detachment. The first floor has two classrooms, each of 40 student capacity, and one large lecture hall for 200 people. On this floor are also found two freshman chemistry laboratories, a solution room for chemicals and offices for professors. On the second floor are two additional labs, only one of which is in use. Also found on the second floor are offices for graduate assistants and a chemical stockroom; the remainder of the floor is presently non-functional due to structural problems.
THE EMERSON CHEMICAL LABORATORY
Bush-Brown and Gailey, Architects
1925

Made possible through funds generated by the Greater Georgia Tech Campaign of 1921, the Emerson Labs were built as an addition to Georgia Tech's first chemistry building, the Lyman Hall Laboratory of Chemistry, in 1925. This addition, designed in a simplified version of the Jacobethan Revival style, matches the three story height of the adjacent Lyman Hall Labs and creates a small courtyard space between the two buildings. The main entrance to the Emerson Building faces south at the side of the Knowles Building (1897), projects slightly from the remainder of the facade, and is the most decorative portion of the structure. Executed a la Beaux-Arts the ornate stonework around the entrance consists of a gable with boxed cornice and returns set on consoles that at the scotia bears an elaborate cartouche containing a superimposed "GST", the initials for the Georgia School of Technology. Under this console-supported gable, set into a cut stone facade, is a three-foot deep barrel vault infilled between stone quoin with red brick; the keystone of the exterior arch of the vault is replaced by another console which blends into another cartouche above which bears the name of the building. The doors to Emerson are glass and wood and are set beneath a six-light vertically divided transom that infills the arch form of the barrel vault. Surmounting this doorway is a single light window (now containing an air-conditioner) set in a heavy stone frame that terminates above the window in a gothic arch. The facing of Emerson has been executed in a red brick utilizing a Flemish bond and limestone for all decorative work, window frames, copings and string courses. On both the east and west facades the brick work is carried above the third floor to create a series of run-on gables broken only by a single small rectangular window in the center of each; two such gables form and define the main (front) portion of the building as viewed from the east. The remainder of Emerson consists of a lateral 3-story laboratory wing that extends along the east side of the building to the rear. This wing is broken only by a gable-end bay window extension near the back of the building which runs through all three floors.

A. FRENCH BUILDING
Lockwood, Greene and Company, Boston
1898

Completed in 1898, the French Building was initially designed to house the School of Textile Engineering. Located near the center of the Old Campus of Georgia Tech, this red brick structure stands directly behind the Administration Building (1888) and adjacent to the Lyman Hall Chemistry Laboratory (1906).

The overall, straightforward and no-nonsense educational philosophy of early Georgia Tech is readily seen in the design of this factory-like building. Utilizing mill construction, the architects, Lockwood, Greene and Company of Boston, designed the facade so as to have almost no ornamentation. Standing three stories in height, the front facade of the building is characterized by its numerous segmented arch windows which have radiating brick-patterned lintels (made of four courses of brick headers) and
rough-cut granite slab sills. The entrance to the building is of the split-level type, which due to the sharp slope of the site led the architects to arrange for the entrance to the building to be placed about mid-point in the elevation and to have stairways both up to the main floor and down to the ground floor. This main entrance on the exterior consists of a pair of wood and glass doors placed beneath a two-part transom (one a 6 x 2 lite rectangular transom, the other a radiating fan-lite version) all of which are set into a round arch opening that rises through a story-and-a-half. This entrance way is unusual in the sense that the brick which frames the opening is not square-cut but round. This entrance arch also possesses the only marble keystone to be found on any of the building's facades. The cornice for the French Building is relatively light, made of wood that has been painted white, as with all of the wood trim of the building, and is supported by a series of wooden "brackets" that are actually extensions of the oak rafters of the roof. Oak rafters, beams, and columns have been used throughout to form the primary structural system of this building.

The interior of the 32,200 square foot A. French Building is still very similar to its initial layout of 1898. Only minor changes have been made, the largest alteration being performed in 1947 by the firm of Bush-Brown, Heffernan and Gailey; this renovation, costing $15,000, consisted primarily of classroom/office space changes necessary when the building was converted from the School of Textile Engineering to the School of Industrial and Systems Engineering. Two fire escapes, of metal construction, were also added at this time, one on the east and one on the west side of the building.

JOSEPH WHITEHEAD INFIRMARY (Now Dean of Students Building)

Located on Cherry Street, just north of what is presently Harrison Square (1968), the Joseph Whitehead Memorial Infirmary was built in 1910 in a style that can best be described as a Georgian variant. This two-story, red-brick building rests on a three-foot high coped marble base. It has a central entrance portico of one-story supported by two fluted columns topped with Tuscan capitals, a full and classically correct entablature and an eave supported with relatively flat consoles; the roof of the portico is typically flat. The doorway to the building is set within a round arch which rests on two short pilasters. Larger, full-height pilasters flank the archway and the entrance door, set in the opening, is of the glass store-front variety. Lower floor windows are of the 2/2 variety and are set into segmented arch brick lintels which have both keystones and end-stones of marble; sills on all windows are also of marble. The second floor of the former Infirmary is separated from the lower floor by means of a marble and brick string course. Upper floor windows, also of the 2/2 variety, are set in simple, white painted wooden frames. The entablature of the cornice of the building is of brick, set as headers and separated both above and below the cornice line by a string course of stretchers. The entablature sports ten terra-cotta and cast stone decorations of a geometric pattern, four of which have beneath them triangular-shaped slabs of marble set in the facade. The cornice is of wood and is supported by double consoles spaced every two to three feet the roof to the building is hipped, covered in slate and is broken at the edge on the nor and south sides of the building by high brick chimneys.
THE D. M. SMITH (OLD PHYSICS) BUILDING
Francis P. Smith, Architect
Robert and Company, Associated Architects
1922-1923

Executed in an eclectic style that first made its appearance in the United States at Princeton University in 1913, the D. M. Smith Building was designed with a subtle blend of both classical and Gothic elements. This Collegiate-Gothic style building stands three stories in height, not including its full daylight basement-ground floor. Its exterior entrance details, complete with Ionic columns and a bracketed pediment, the finials above the cornices of the pitched roofs, and the cartouche ornaments found in the gable-ends of the building all reflect the classical influence on the facade. However, even though this building possesses certain classically inspired details, it must be pointed out that the Gothic style is the dominant of the two used in the design, as is seen in the bay windows on both ends of the front facade, the white limestone sills of all the building's windows, the band courses contrasted with the large brick surfaces of the building elevations, and the emphasized verticality of the pitched, slate roofs.

In both plan and elevation, the key characteristic of the D. M. Smith Building is its symmetry. Circulation patterns, such as the halls, stairways and entrances, are all symmetrical about the General Laboratory on the ground floor, and repeat themselves on the first and second floors about the central Lecture Hall and even on the third floor which has no large, central space. Symmetry of window arrangement on all floors has produced consistent elevations but some peculiar room treatments such as a bay window in the student's toilet on the third floor.

When completed in 1923, this reinforced concrete building housed: 3 electrical laboratories, 1 physics lab, 2 halls, 2 libraries, 3 architectural drafting rooms, 2 civil engineering drafting rooms, 2 photometry rooms, 2 physics research rooms, 2 studios, 8 classrooms, 1 x-ray room, 6 apparatus rooms, 1 workshop, a Director's Laboratory, 1 chemistry room, a switchroom, a pendulum tower, an architectural supply room, and 9 faculty offices. Since 1923, the Smith Building has been altered only once, in April 1970, when the firm of John W. Cherry and Associates renovated the interior of the central Lecture Hall, Room 105, adding a curved, suspended ceiling to the two-story space, wall-to-wall carpeting and a vinyl wall covering.

SAVANT BUILDING

A simple brick structure, the Old Electric Building is symmetric in design and is representative of many of Tech's early structures. A central entrance of cut limestone is composed of two simple but broad pilasters topped by a simple and undecorated entablature and cornice, the former bearing in dark metal letters the present name of the building "D. P. Savant". In front of this entrance, on two short podiums stand two electric lights on cast iron posts and bases that date from 1911, a gift of the graduating class of that year. Immediately adjacent to the entrance and separated only by a thin strip of the red brick which faces the building is an 8/8 window; four
such windows are found to either side of the entrance and nine more on the second floor. The windows of both floors have limestone sills and jack arches, the latter being treated in a rusticated manner. The third floor is separated from the first two floors by means of a limestone string course which projects slightly under each window to form a sill. These third floor windows are of the 4/4 variety vertically divided. The entablature of the building is a narrow band of limestone and is topped by a simple console supported eave of some three feet in depth.

JANE AUSTELL SWANN DORMITORIES - 1901

Extremely classical in derivation, this three story former dormitory has a symmetrical red-brick and cut limestone facade complete with a central two-story Tuscan portico. This portico, supported across the front by four doric columns and on the facade by two Doric pilasters, is simple but massive. The cornice and entablature are proportionately correct with the frieze bearing the name of the building cut into the stone. The columns sit on the base of the porch with steps placed between the three-foot diameter columns to give access to the ground level. A central doorway (now a glass storefront door) is found under the portico with an 8/8 window to each side and three of the same above. Both the doorway and the windows on all floors except the third have stone sills and jack arch lintels. The third floor is like the Savant Building next door, separated from the first two levels by means of a cut-stone string course which doubles as a sill for each of the eleven windows on that floor. The entablature of the building is of limestone and is plain while the cornice sports a copper gutter decorated every 12" with an acroterions.

KNOWLES BUILDING

Standing in stark contrast to the west stands of Grant Field which rises behind it like a colossal stage backdrop, the Knowles Building with its simple form and detailing is clearly typical of many of Georgia Tech's early buildings. Built originally as a long, low two-story dormitory with full daylight basement that once overlooked Tech's athletic field on the far eastern extreme of the campus, the Knowles Building today appears much as it did in its heyday. A centrally located door, approached by means of a wide, shallow roofless porch, is found in the center of the once symmetrical facade. Paired windows of the 2/2 variety stretch to either side of this doorway with the same arrangement (with a window instead of a door) on the second floor. Two projecting "side wings" each contain a door that opens on to the porch and two 2/2 windows on the front facade. The roof is hipped and covered with folded seam lead while all of the exterior walls are of red brick.
Beaux-Arts Renaissance Revival in style, the John Saylor Coon Mechanical Engineering Building, located at the corner of Ferst Drive and Cherry Street represents the first enlargement of the original nine acre campus of Georgia Tech. The building, built of red brick with decorative elements of terra-cotta, actually consists of two parts built in three phases over differing time spans. The first, the original Mechanical Engineering Building, built in 1911, is a three-story block that initially contained faculty offices and classrooms; the second portion of the facility is a long fourteen-bay, two-story high wing that was added over the years 1919-1929 to house needed shops, laboratories and drafting rooms. The third part of the Mechanical Engineering Building is the Research Laboratory. Located behind the original block and subsequently added shop wing, this lab was erected to increase research space. All of the buildings are of red brick and have had extensive interior alterations.
Hicitic District of the Georgia Institute of Technology, commonly known as the Old Campus of Georgia Tech, is significant in the areas of architecture, education, engineering and science, as well as landscape architecture. As one of the major engineering institutions in the United States today (it ranks 8th), Georgia Tech, founded in 1885, has long been a driving force in the southeast in the area of technological training and innovation for continued industrial and scientific expansion.

Born as the result of a conversation between Nathaniel Edwin Harris, a prominent Macon, Georgia attorney and Major J. F. Hanson, manufacturer, Georgia Tech's beginnings - at least conceptually - can be traced back to early May, 1882. At that time Major Hanson met with his friend Harris to explain the need for a technological school in Georgia. Hanson argued that such a school would be mandatory in Georgia if the state was to be provided with the educated manpower and leadership necessary for a continued industrial expansion. Harris agreed and in the course of the conversation remarked that "I would rather be the author of a law establishing such a school than to be Governor of Georgia." But, as it worked out, Harris became both author of the law and governor of the state. The immortal Henry Grady, of the Atlanta Constitution, joined forces with Harris and Hanson, picking up the cudgel and likewise fighting vigorously for the creation of the school that was to become the Georgia School of Technology.

"Georgia Tech was founded in that period when the general cry for industrialization was finding a response in the establishment of engineering schools in all parts of the Nation." The actual resolution introduced before the Georgia legislature was passed on November 24, 1882 and then "Governor Alexander H. Stephens immediately appointed a commission of ten men to visit and study the leading engineering schools in the United States. On recommendation of the committee the general assembly in 1885 appropriated $65,000 for the establishment of the Georgia School of Technology."

One of five competing cities which also included towns like Athens, Macon, and Penfield, Atlanta made the high bid of $130,000 in land and money for the site of the new school. A professor from the Worcester Polytechnic Institute of Massachusetts was engaged to organize Georgia's first engineering school and in 1887 construction of the first building was begun on a five-acre tract purchased from the Peter's Land Company; Richard Peters later donated an additional parcel of land to bring the size of the original campus to nine acres.

Dr. Isaac Hopkins, who had offered the first technological course ever taught in the south at Emory College in 1884, was chosen as Georgia Tech's first president. The school opened on October 3, 1888 with a total enrollment of 84 students. Formal "installation services" were held at the De Give Opera House.
MAJOR BIBLIOGRAPHICAL REFERENCES
Wallace, Robert, *Dress Her in White and Gold*, (Georgia Tech Foundation, 1969)
Records of the Georgia Tech Archives, Price-Gilbert Memorial Library, Georgia Institute of Technology, Atlanta
Files of the School of Architecture, Architectural Library, Georgia Institute of Technology Consultation with Dr. Elizabeth Lyon, Chairman, Atlanta Urban Design Commission Advisory Committee on Historic Sites, Structures and Districts.

GEOGRAPHICAL DATA
ACREAGE OF NOMINATED PROPERTY 10 acres
UTM REFERENCES

<table>
<thead>
<tr>
<th>UTM REFERENCE</th>
<th>ZONE</th>
<th>EASTING</th>
<th>NORTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1,6</td>
<td>74,4,1</td>
<td>3,7,3,9-930</td>
</tr>
<tr>
<td>B</td>
<td>1,6</td>
<td>74,4,1</td>
<td>3,7,3,9-930</td>
</tr>
<tr>
<td>C</td>
<td>1,6</td>
<td>74,4,1</td>
<td>3,7,3,9-930</td>
</tr>
<tr>
<td>D</td>
<td>1,6</td>
<td>74,4,1</td>
<td>3,7,3,9-930</td>
</tr>
</tbody>
</table>

VERBAL BOUNDARY DESCRIPTION
Intersection of centerline of North Avenue and Cherry Street, proceed north to intersection of centerline of Uncle Heine Way. Follow centerline west to intersection with alley running behind the Coon Mech. Engineering Building. Follow centerline to north and turn east along walkway on north side of the Mech. Eng. Bldg. At intersection with Cherry Street, follow Cherry north to intersection with Third Street. Follow centerline of Third Street to alley behind D. M. Smith Building. Follow Alley, along centerline, around Steam Plant to line parallel with the rear of the Lyman Hall-Emerson Chemical Laboratories. Follow behind

STATE HISTORIC PRESERVATION OFFICER CERTIFICATION
THE EVALUATED SIGNIFICANCE OF THIS PROPERTY WITHIN THE STATE IS:
NATIONAL ___ STATE X LOCAL ___

As the designated State Historic Preservation Officer for the National Historic Preservation Act of 1966 (Public Law 89-665), I hereby nominate this property for inclusion in the National Register and certify that it has been evaluated according to the criteria and procedures set forth by the National Park Service.

STATE HISTORIC PRESERVATION OFFICER SIGNATURE
DAVID M. SHERMAN
DATE 5-15-77

FOR NPS USE ONLY
I HEREBY CERTIFY THAT THIS PROPERTY IS INCLUDED IN THE NATIONAL REGISTER

DIRECTOR, OFFICE OF ARCHAEOLOGY AND HISTORIC PRESERVATION
ATTEST:
KEEPER OF THE NATIONAL REGISTER

TELEPHONE 634-0830
CITY OR TOWN Atlanta
STATE Georgia
The Old Campus

The Old Campus of Georgia Tech is significant for more than just the design of the building of which it is comprised. For whereas the buildings within this portion of the campus are not necessarily outstanding works of architecture, the most important quality of "the hill" is its sense of space and time. As is evident in the placement of the buildings within the Old Campus, little thought was actually given to the future expansion of the then young technological school. Instead, the site planning was carried out in such a manner as to meet the immediate and pressing needs of the school. This practical approach to siting has created what is, today, the Old Campus' most significant quality: its sense of space. The scale of the buildings appears almost European when experienced from points along the narrow circulation paths within the area. These paths, obviously pedestrian at one time, have now been asphalted to allow administrators to park their cars "at their doorways" which contributes, of course, to a visual destruction of the harmony found within this portion of the Tech campus. However, the spatial qualities are so much stronger than this visual blight that one still "feels" the space even though he recognizes that the cars "do not belong" and are out of place. The balance of the buildings in this area is so delicately arranged, both around the existing terrain and undesirable surrounding intrusions that the removal of a single building would totally destroy the character of this district and would render it much less significant.

The "harmony" found within the Old Campus is attributable to the fact that almost all of the buildings located there are "turn-of-the-century", 1885 - 1923, and all exhibit a consistent approach in design and construction. However, the consistency does not include dull repetition of style or form and this in itself is significant.

The Administration Building: Let by a contract on May 5, 1887 to Angus McGilvray who bid $43,250 to construct this building designed by Bruce and Morgan, the old Academic Building was completed by 1888. This structure once housed Tech's Library, President's Office, Classrooms, and other academic facilities. It was remodelled in 1963-64 on the interior with major alterations. Its best known feature is its "Tower" with the word TECH emblazoned on each of its four sides electrically lighted at night, marking it a landmark in Atlanta.

The Carnegie Building: Donated by Andrew Carnegie to Georgia Tech on March 12, 1906, this building served the school as a library until November of 1953. Construction was officially begun on this building on November 21, 1906 and the facility opened in September 1907. Columbia University contributed 700 books to Tech around the time of the opening and Julius L. Brown later donated an additional 3000 books from his estate along with other gifts.

The Old Infirmary: Presently used as the Dean of Students Building, the Old Infirmary is significant in that it was a woman's organization, the Women's Federation of Clubs in Atlanta, that assisted then President Kenneth G. Matheson in raising the money to build the health facility. In November 1909 Mrs. Joseph B. Whitehead, widow of the man who had made his fortune in bottling Coca-Cola, contributed $5000 and by the summer of 1910, $15,000 had been contributed and construction began.
A. French Building: Erected in 1897 by a philanthropist from Pittsburgh, Aaron French, this building was initially Tech's School of Textiles. French helped to establish the school with a generous contribution of money and machinery. The building was converted, in 1949, for use by the School of Industrial Engineering and was renovated with a $15,000 grant from the Rich Foundation.

Knowles Building: A former dormitory erected in 1897 through the assistance of Clarence Knowles, a local resident who had helped to secure the initial $20,000 needed from the state legislature to begin construction of this building, Tech's first planned dormitory. It has been remodelled three times: 1924, 1947 (when converted to office use) and again in 1964. Currently in danger of demolition, this building provides a significant barrier to what would otherwise be a monstrous intrusion, the Grant Field stadium.

D. M. Smith Building: Built by the Carnegie Foundation at a cost of $250,000 in 1923, this building was the first structure to establish an architectural style that was used consistently for all Tech's buildings. For twenty years, the style of this building - a variant of English collegiate - was used with great regularity after having been decided on by Professors Skinner and H. Bush-Brown of Tech's School of Architecture. Initially designed to house Architecture and Physics, the building now houses Social Sciences, Psychology laboratories and mathematics offices.

Lyman Hall Laboratory: Built in 1905-06 under legislative appropriation of $10,000, the Lyman Hall Lab was Georgia Tech's first Chemistry Building. Named after Lyman Hall, a president of Georgia Tech, this neo-Romanesque revival structure was completed at a cost of $20,000. Hall, who changed Tech from a small trade school into a major engineering institution, died two months prior to the cornerstone laying of this building which had been a pet project of his for some years.

Swann Dormitory: Erected through the contributions of James Swann of New York, this $30,000 building was opened in late 1901; an additional $5000 towards the construction of this "memorial" building was donated by William Randolph Hearst. Built as a memorial to Swann's wife, Janie Austell Swann, the structure is presently used to house the Department of Modern Languages. Some renovation was undertaken in 1964.

D. P. Savant Building: Formerly the Old Electrical Engineering Building, the Savant Building was built in 1901 and is named after Domenico P. Savant. Two incandescent electric light standards, 1911, frame the entrance of this building and were a gift of the graduating class of that year.

Emerson Building (1925): Built in 1925, as an addition to the Lyman Hall Laboratory of Chemistry through the use of funds generated by the Greater Georgia Tech Campaign of 1921, the Emerson Labs are named in honor of Dr. William Henry Emerson who served as head of the Department of Chemistry from 1888 until his death in November, 1924. As part of the school's original faculty Emerson constantly sought to bring better facilities to the school and this $100,000 structure provided a badly needed lecture hall and laboratories for both the Departments of Chemistry and Chemical Engineering.
Originally site of the "Shacks", two-story wood-sided buildings that had been used since the beginning of Georgia Tech as dormitories, the Emerson Building serves both to terminate the northeast corner of the old Tech campus and to further define the space created by encircling the centrally located Administration Building (1888). Emerson is also vital in preventing the adjacent, concrete and steel West Stands of Grant Field, a 58,000 seat stadium, from being considered a definite intrusion on the integrity of the historic district.

John Saylor Coon Mechanical Engineering Building (1911): Beaux-Arts Renaissance in style, the Mechanical Engineering Building, located at the corner of Ferst Drive and Cherry Street represents the first extension to Tech's original nine acre campus. Built with the aid of the Atlanta Chamber of Commerce who raised $22,000 towards the total $178,000 cost of the entire facility, the building was erected in several stages. The first three of its five units were up by 1912; in August 1919 the legislature appropriated $100,000 for the remaining two units of which one was erected by 1920 while the other was not completed until 1938.

John D. Rockefeller Y.M.C.A. Building: Donated by means of a $50,000 gift of John D. Rockefeller in February of 1910, the Rockefeller YMCA was built at a cost of $75,000 of which $25,000 was donated by friends of the school. Used today as a center for Architectural Research, this building is soon to be renovated for use as a National Alumni Headquarters. Like the Administration and no-longer extant Old Shop Buildings, this structure was designed by the firm of Morgan and Dillon, a carry-on of the old Atlanta architectural firm of Bruce and Morgan.

Georgia Tech has had far too many "firsts" and outstanding personages associated with engineering and engineering education to recount all of them here. One of the oldest radio stations in the U.S., WGST, founded in 1923 by the Honorable Clark Howell was a gift to Tech in that year. Georgia Tech was also one of the first six schools in the United States to establish and maintain a Naval ROTC program (founded 1926). Personalities associated with the school include such famous people as Bitsy Grant (tennis); Bobby Jones (golf); Ivan Allen, Jr. (politics; mayor of Atlanta); John Heisman (football coach); Charles Lane (humorist); Chip Roberts (Assistant United States Treasurer); and Y. Frank Freeman (Paramount Pictures magnate).

Thus, Georgia Tech is significant in the fields of architecture, education, engineering and science. It possesses the valuable resource of turn-of-the-century buildings which not only reflect the schools attitudes towards education at the time (straightforward and without adornment) but provide a sense of space and intimate enclosure that one seldom finds today. Within these historic structures, men both great and small, from Dr. Hopkins who presided over the school in 1888 as its first president to John Young who walked the moon in 1969, taught or were taught and each contributed significantly to the overall development of Georgia Tech. As a whole, the Old Campus reflects an attitude and a time and place that in itself is rare. This is attributable in part to the fact that the Old Campus has no serious intrusions within its boundaries and as a result allows one to explore a technological college campus of the late nineteenth century.
labs to a line parallel with the western edge of Grant Field; proceed along this line to the northern edge of North Avenue at which point proceed east to a point opposite the eastern edge of the Old Rockefeller YMCA; at this point proceed south to the rear lot line of the YMCA. Proceed along rear lot line to the center line of the roadway on the West side of the YMCA. Proceed north along roadway to the Centerline of North Avenue. Proceed along centerline of North Avenue to intersection of centerline of Cherry Street to close.
The Historic District of Georgia Institute of Technology, Atlanta, Fulton County
Photographs by: David J. Kaminsky
Date: Summer, 1976
Negatives filed at: Department of Natural Resources

1. Whitehead Building, looking east.
2. Carnegie Building, looking north.
4. Lyman Hall, looking north.
5. J. S. Coon Mechanical Engineering Building, looking northwest.
6. Rockefeller YMCA, looking southwest.
7. Administration Building, looking north.
8. Knowles Building, looking northeast.
10. Savant Building and Swann Building, looking southwest.
AMENDMENT
HISTORIC DISTRICT OF THE GEORGIA INSTITUTE OF TECHNOLOGY
ATLANTA, FULTON COUNTY, GEORGIA

Following are the responses to the questions raised by the National Register office regarding the Historic District of the Georgia Institute of Technology. A new boundary/sketch map is attached.

1. The southeastern corner of the boundary should have been drawn as per the boundary description (see new map diagram attached). There is no significance to the landscaped area.

2. The area included within the boundary of the nominated district should be ten (10) acres. The land area of the Coon Mechanical Engineering Building and of the Rockefeller YMCA account for the acre added to the original 9-acre campus.

3. The map diagram submitted with the nomination form included marks enclosing buildings which were later dropped from consideration. Please see new map diagram attached.

4. Harrison Square is the landscaped area immediately west of the French Textile Building and is marked with an asterisk on the new map diagram attached.

Prepared By:

Martha Norwood
Historic Preservation Section
Department of Natural Resources
270 Washington Street, S. W.
Atlanta, Georgia 30334
(404) 656-2840

May 25, 1978

Elizabeth A. Lyon
Acting State Historic Preservation Officer
Plan of the Campus of the Georgia Institute of Technology
Campus Planning Office, 1962 as revised
Scale: 1" = 400' approx.

GEORGIA TECH HISTORIC DISTRICT BOUNDARIES ARE CENTERLINES OF STREETS AND ALLEYS (EXCEPT EAST BOUNDARY, A PORTION OF SOUTH BOUNDARY BACK OF CHEMISTRY BLDG.)
Plan of the Campus of the Georgia Institute of Technology
Campus Planning Office, 1962 as revised

Scale: 1" = 400'
APPENDIX C
ARCHAEOLOGY REPORT
The Georgia Institute of Technology
Archaeological Site Probability Update
Fulton County, Georgia

Report submitted to:
Lord, Aecck, and Sargent • 1201 Peachtree Street NE • Atlanta, GA 30309

Report prepared by:
New South Associates • 6150 East Ponce de Leon Avenue • Stone Mountain, Georgia 30083

J.W. Joseph, Ph.D., RPA – Principal Investigator

Wm. Matthew Tankersley – Archaeologist and Co-Author
Mark Swanson – Historian and Co-Author
Brad Botwick – Archaeologist and Co-Author
J.W. Joseph, Ph.D., RPA – Principal Investigator

June 6, 2011 • Revised Draft Report
New South Associates Technical Report 1720
ABSTRACT

This report provides an update to the 2001 study of archaeological site potential for the campus of the Georgia Institute of Technology. This report addresses the core campus buildings and those properties acquired since 2001. A review of the files at the Georgia Archaeological Site Files in Athens revealed five archaeological studies have been conducted in the vicinity of campus properties, and eight archaeological sites have been identified on campus near campus holdings. The 2001 examination of historical background material and topographic and hydrographic data identified seven areas on the Georgia Tech campus with potential to possess prehistoric and/or historic archaeological resources (Swanson 2001). Four of these areas featured a high probability for the presence of sites, and three areas featured a medium probability. Additionally, the 2001 study also identified areas associated with significant Civil War activity in 1864.

The current research revealed that the portion of the campus within the Georgia Tech National Register District should be considered having a high potential for archaeological deposits associated with the Institute’s early history. This escalation in archaeological potential is a refinement of the 2001 study. Additionally, archaeological survey is recommended for projects such as landscaping activities, which will result in ground disturbance below eight inches, and/or groundbreaking activities such as systems installation that require excavation below eight inches. The results of archaeological survey should be provided to campus facilities staff and outside contractors and referenced in campus maps prior to conducting projects that disturb subsurface deposits.
ACKNOWLEDGEMENTS

This report was drafted for the Lord, Aeck, and Sargent and the Georgia Institute of Technology. A number of individuals contributed to compiling the following report. Rob Yallop of Lord, Aeck and Sargent provided valuable information concerning campus architecture. Gratitude is extended to Lisa Jackson of the Georgia Tech’s Center for Geographic Information Systems for providing critical data concerning the location of the campus properties. Brad Botwick prepared the Prehistoric Context, while Mark Swanson of New South Associates, Inc., prepared the Historic Context. Wm. Matthew Tankersley authored this report, and J.W. Joseph, Ph.D., RPA served as the Principal Investigator.
TABLE OF CONTENTS

ABSTRACT ... i
ACKNOWLEDGEMENTS .. ii
TABLE OF CONTENTS ... iii
LIST OF FIGURES ... iv
LIST OF TABLES .. iv

I. INTRODUCTION .. 1

II. PREHISTORIC CONTEXT .. 3
 Paleoiindian Period .. 3
 Archaic Period .. 3
 Woodland Period ... 4
 Mississippian Period ... 6
 Protohistoric/Contact Period .. 6

III. HISTORIC CONTEXT .. 9

IV. PREVIOUS ARCHAEOLOGICAL SITES AND STUDIES 15

V. RECOMMENDATIONS ... 21

REFERENCES CITED .. 25

APPENDIX A: GEORGIA ARCHAEOLOGICAL SITE FORMS
LIST OF FIGURES AND TABLE

Figure 1. The Vicinity of the Georgia Tech Campus on Plate 51 of the Official Military Atlas of the Civil War...10
Figure 2. The Vicinity of the Georgia Tech Campus on Plate 88 of the Official Military Atlas of the Civil War...11
Figure 3. Identified Archaeological Sites, National Register Districts, and Archaeological Probability Areas in the Vicinity of Georgia Tech..............................16
Figure 4. Previous Archaeological Surveys in the Vicinity of Georgia Tech...18
Figure 5. Potential Locales for Civil War Period Resources in the Vicinity of Georgia Tech...22
Figure 6. Sanborn Fire Insurance Maps, Atlanta, Georgia, Sheet 109, 1899...23

Table 1. Previously Recorded Sites on and in the Vicinity of the Georgia Tech Campus.........................15
I. INTRODUCTION

In June of 2001, New South Associates, Inc. conducted a study to identify portions of the Georgia Institute of Technology campus that could potentially contain archaeological resources. The study identified four areas with a high probability for archaeological deposits and three areas with moderate potential. In addition to the archival research, extensive pedestrian survey of the campus was conducted to identify salient topographical elements and the extent of developmental impact. The resulting report and map was prepared both for Georgia Tech and the architectural firm of Lord, Aeck, and Sargent. This report provides an update to the first archaeological sensitivity study, addressing properties acquired by Georgia Tech since 2001 and the guidelines adopted by the Georgia Board of Regents concerning campus historic preservation plans.

This study reexamines portions of the Georgia Institute of Technology addressed in 2001, which is composed of buildings forming the core campus, bounded roughly by Tenth Street, Tech Parkway, the 75/85 Connector, and North Avenue and campus properties acquired since 2001. This report broadens the scope to accommodate campus properties acquired along West Peachtree Street and properties located between Tenth and Fourteenth Streets, north of the core campus area.

The background research of the initial study identified seven areas within the campus with moderate or high archaeological potential, the remainder of the campus having a low potential for resources. Portions of the initial research are reprinted here to provide context for the areas defined as archaeologically sensitive. Many of the same background resources found in the 2001 report, like historic period maps and images, were consulted for the current study. The collected research materials were supplemented with historic aerial imagery of the campus to further assess the impact of development in the sensitivity areas by the mid-twentieth century.

Areas with the potential for the presence of prehistoric sites was determined in the 2001 report by the location of high ground in proximity to natural stream courses within the bounds of the campus. Alternatively, the location of potential historic sites was determined by examining local history. Evidence for potential historic sites was primarily based on an examination of maps and other archival materials on file with the Georgia Tech Archives and the Atlanta History Center. Local history in this corner of the city essentially begins with the Civil War.

Building on the findings of the 2001 report, research was conducted at the Georgia Archaeological Site Files to identify previously recorded sites and archaeological surveys conducted on and adjacent to campus properties. Additionally, aerial imagery from 1949 was examined to assess the location of potential archaeological resources within the areas deemed archaeologically sensitive that date to the early twentieth century.
This report is divided into four sections. The Prehistoric Context provides an overview of Native American cultures in North Georgia up to European Contact. The Historic Context addresses the specific local history of the Georgia Tech campus, drawing upon historic maps and other resources. The Previous Archaeological Sites and Studies section provides a summary of the identified sites on and adjacent to campus properties as well as synopses of archaeological studies conducted near campus. The report concludes with a section of recommendations for continued stewardship of archaeological resources on the Georgia Tech campus. Appendix A contains the Georgia Archaeological Site Forms for the project area.
II. PREHISTORIC CONTEXT

Prehistoric contexts provide a basis for interpreting and evaluating any Native American archaeological sites that might be found on the Georgia Institute of Technology campus. Prehistoric archaeological resources would relate to Native American cultural patterns associated with this portion of North Georgia. While no prehistoric archaeological resources have been identified on or adjacent to campus properties, the 2001 study recognized areas that could potentially possess prehistoric archaeological resources. These prehistoric period resources would likely fall into one of the broad cultural periods of North Georgia summarized in the following sections. The prehistoric period is divided into the Paleoindian, Archaic, Woodland, and Mississippian periods. The era of initial contacts between native and European societies is called the Protohistoric/Contact period.

PALEOINDIAN PERIOD

The Paleoindian period (10,000-8000 B.C.) represents the earliest known human presence in Georgia. Recent research in nearby areas, most notably in South Carolina (Goodyear 2005), suggests that people entered the southeast earlier, but no similar findings have been made in Georgia to date. Diagnostic Paleoindian artifacts include Clovis, Suwannee, Simpson, Cumberland, and Dalton points.

Paleoindians adapted to late glacial and early Holocene environments that offered significantly different conditions than exist today. Archaeologists have characterized them as living in small, mobile social units with an economic focus on hunting and collecting wild foods. Evidence from sites in eastern North America suggests that they hunted animals such as caribou (now extinct in the southeast), deer, and smaller game (Sassaman et al. 1990; Walker 2000; Hollenbach 2005). Paleoindian sites in Georgia have been found on levees, terraces, upland edges and uplands. The floodplains of small streams are not expected to contain such sites (Anderson et al. 1990:54). Most finds from this period occur below the fall line, suggesting people lived mainly in the Coastal Plain (Hally and Rudolph 1982a, 1989b). This circumstance might have been due to their settlement and subsistence practices favoring ridgetop barrens and locations near bottomland swamps. Such zones were much more prevalent in the Coastal Plain than in the forested Piedmont.

ARCHAIC PERIOD

During the Archaic period (8000-1000 B.C.), conditions approximating modern environments emerged. As people adapted to changing habitats, new technologies and sociocultural arrangements arose. Important features of the Archaic period, which is divided into early, middle, and late subperiods, include technological developments, settlement and subsistence change, and increasing social complexity.
The Early Archaic (8000-6000 B.C.) shows continuities with the preceding era but with some distinct differences, most obviously in technology. New projectile point types appeared, including varieties of Palmer and Kirk (Coe 1964; Anderson and Joseph 1988). Emerging Holocene environments caused changes to various lifeways and social practices. Hunting, for instance, required adjustments to account for the disappearance or extinction of Pleistocene fauna and increased emphasis on modern species (Caldwell 1952; Anderson and Joseph 1988). Social units remained organized into egalitarian bands and subsistence relied on hunting and gathering seasonally available resources within limited geographic areas (Griffin 1952). Individual bands might have spent most of the year moving between the Coastal Plain and Piedmont within specific major river valleys. Groups of bands congregated annually at central locations, probably at the fall zone, for interaction, exchange, and other purposes (Anderson and Hanson 1988).

Diagnostic artifacts of the Middle Archaic Period (6000-3000 B.C.) include Stanly, Morrow Mountain, and Guilford projectile points (Coe 1964). Social and economic organization probably changed little from the small hunting bands thought to characterize the Early Archaic and Paleoindian periods. However, Middle Archaic groups in the Piedmont are thought to have been highly mobile and flexible in their use of subsistence resources (Blanton and Sassaman 1989). In addition, dependence on quartz as a raw material for stone tools suggests that band territories became restricted, isolating some groups from stone sources better suited for flaking. The widespread Morrow Mountain horizon throughout the southeast indicates that even with constrained territories, inter-group contact and probably aggregation continued to take place (Windham 2008:29-30).

Important developments of the Late Archaic period (3000-1000 B.C.) include population growth, intensive use of various environments, greater settlement stability, and more complex social organization. The first appearance of ceramic technology in North America took place during this period, the earliest known pottery coming from Stallings Island in the Savannah River Valley. Late Archaic projectile point types include stemmed varieties, including Savannah River, Otarre, and Paris Island (Coe 1964; Wauchope 1966; Blanton et al. 1987). Late Archaic sites and site components are relatively common in north Georgia (Blanton et al. 1987; Braley 1988; Crook 1984). Site locations suggest that people began concentrating settlement in valley bottoms, although sites are more numerous in the uplands than during prior periods, implying greater use of all habitats. Settlements were occupied for longer periods than earlier and population increased. Most likely, people lived most of the year in large aggregate camps situated in major river valleys, then the camp broke up and smaller groups moved to seasonal residences at the heads of drainages. Subsistence activities appear to have involved mainly riverine resources, though terrestrial plants and animals remained important. No evidence for horticulture has been found in the region. Yet, it is possible that people manipulated local habitats to favor certain wild plants (Stanyard 2003:59; Windham 2008:30-32).

WOODLAND PERIOD

The Woodland period is characterized by increased social complexity, ceremonial activities, and a diversified subsistence pattern that relied on small game animals, riverine products, and the incorporation of cultivated plants into the traditional regimen of collecting wild plants. Widespread use of ceramics also emerged where previously it had been more sporadic. Ceramic technology provided improved storage of surplus food, which affected settlement and subsistence practices
and had consequences for social relationships. The Woodland period is commonly divided into three phases in the southeast based on ceramic and point types and on the presence or absence of burial mounds.

The Early Woodland period (1000-100 B.C.) in North Georgia is not well documented. The period is associated with an archaeological culture termed the Kellogg phase, characterized by fabric-marked Dunlap pottery and triangular projectile points, such as Copena and Candy Creek (Cambron and Hulse 1975). Grinding stones for processing plants and boat stones are also typical (Caldwell 1952; Garrow 1975:18; Wood and Bowen 1995). Early Woodland people lived in villages on floodplains along creeks and streams. Characteristic projectile point types include Copena and Candy Creek. In addition to large villages occupied for most of the year, people visited diverse locations to gain access to specific seasonally available resources. Smaller, short-duration campsites reflect these activities. Subsistence relied on a wide assortment of wild foods, but the emphasis on riverine products seen in the Late Archaic declined (Ford 1985; Wood and Bowen 1995:8-11; Windham 2008:33).

A subsequent archaeological culture, the Cartersville focus, emerged around the transition from the Early to Middle Woodland period (100 B.C.-A.D. 500). Ceramic types typical for the Early Woodland continued to be produced while Cartersville Simple Stamped pottery appeared alongside it (Garrow 1975). Varieties of stemless projectile points, grinding tools, slate and shale hoes, boatstones, gorgets, and celts also define this era. Hunting and gathering continued to form the basis of the subsistence economy but semi-domesticated species were also used, while mast declined in importance. Sites became smaller than during the Early Woodland and typically occupied terraces adjacent to streams (Garrow 1975; Wood and Bowen 1995:11-12). New and more elaborate ritual activities appeared during this era. Manifestations of this phenomenon included the first earthworks constructed in North Georgia and internment of presumably high-ranking individuals in earthen and stone mounds along with exotic artifacts (Jeffries 1976; Cable and Raymer 1991; Wood and Bowen 1995; Windham 2008:41). These activities indicate that north Georgia societies adopted elements of the Hopewellian tradition, although they were superimposed on local cultural practices (Garrow 1975; Jennings 1989).

The Late Woodland period (A.D. 500-900) covers a transition from the hunting and gathering cultures that persisted in one form or another during much of the prehistoric era to more complex sociopolitical societies that developed in the Mississippian period. In north central Georgia, the Late Woodland is associated with the Swift Creek phase. Simple-stamped pottery appeared near the end of the Middle Woodland and gradually replaced Cartersville as the dominant type (Windham 2008:41-42). During the later Swift Creek phase, complicated stamped varieties of pottery known as Swift Creek and Napier appeared. Projectile points included small stemmed, side-notched types such as Baker Creek and Swan Lake along with grinding stones and hammerstones (Garrow 1975, Rudolph 1986; Wood and Bowen 1995:14; Whatley 2002). Available data suggest that subsistence remained focused on hunting, gathering and some plant cultivation. Corn was present in the region but never comprised an important part of the Late Woodland diet. Swift Creek site locations show an affinity for large floodplains of major rivers. They rarely occur in uplands or along tributary streams (Wood and Bowen 1995:15-16).
MISSISSIPPIAN PERIOD

The Mississippian period represents an era of complex social arrangements recognized archaeologically by hierarchical site relationships, stockaded villages, ceremonial mounds, and evidence of agriculture-based economies (Blanton et al. 1987). Hally and Rudolph (1986) divide the Mississippian period into Early, Middle, and Late Mississippian.

Woodstock and Etowah cultures represent the Early Mississippian period (A.D. 900-1200) in the project region. The Woodstock culture may be the earliest Mississippian expression in the region and is recognized on the basis of sand tempered, wide-mouthed, conoidal jars decorated with concentric oval, diamond, and lineblock-stamped surfaces. Related material culture included triangular projectile points and sherd disks. Settlements consisted of small villages and large towns that occasionally contained temple mounds. Etowah ceramics, distinguished by ladder base diamond, lineblock, and complicated stamped motifs sometimes co-occurred with Woodstock ceramics but are generally judged to post-date them. Late in the Etowah period, major political and ceremonial centers arose in the Piedmont, suggesting that sociopolitical complexity had grown considerably over the earlier periods (Hally and Rudolph 1986).

The Savannah culture is the only culture recognized within the Middle Mississippian period (A.D. 1200-1350). This cultural manifestation is recognized primarily on the basis of four pottery types: Savannah Complicated Stamped, Etowah Complicated Stamped, Savannah Check Stamped and Savannah Plain. Site types, mound styles, settlement, and subsistence practices remained relatively unchanged from the preceding period (Windham 2008:46). Regional societies participated in the Southeastern Ceremonial Complex, a religious tradition spread widely across the southeast that shared styles of artifacts, iconography, ceremonies, and mythology. The Savannah Culture encompasses several sub-phases, including the Beaverdam, Hollywood, Scull Shoals, and Wilbanks Phases, all named after representative sites (Hally and Rudolph 1986).

The Late Mississippian period (A.D. 1350-1550) is associated with Lamar culture, a widespread tradition in the southeast that lasted to the time of European contact. Diagnostic artifacts include Stamp Creek ceramics, which exhibit applied clay strips at vessel lips, as well as punctations, nodes, or finger pinching around the vessel rim and poorly executed complicated stamping of the exterior surfaces (Cable and Raymer 1991:14). Settlement included mound centers, while small farmsteads in the hinterlands of the regional centers became more common than during prior times. Houses were built of wood posts covered in mud plaster, bark, or thatch and were probably occupied all year. Subsistence continued to rely on a mix of cultivated plants, especially maize, and other wild plants and animals (Hally and Rudolph 1986; Windham 2008:46).

PROTOHISTORIC/CONTACT PERIOD

The first known contacts between Native and European societies in northern Georgia resulted from Spanish expeditions to explore the interior of North America. Of three sixteenth-century explorers in the southeast (de Soto, de Luna, and Pardo), only Hernando de Soto explored the Georgia Piedmont, while de Luna’s force made it to Georgia but did not extensively explore the Piedmont (Smith 1992).

These early explorers encountered the Late Mississippian societies that arose in Georgia during the previous 200 years. The broader region encompassed several complex chiefdoms controlling large aboriginal populations (Loubser and Smith 1997:66). Archaeological manifestations of these cultures would resemble those for the end of the Mississippian era. Information recorded by
Spanish explorers indicated regional social, political, and cultural differences existed and these might be discernable through variations in ceramic style. All of the ceramics of the sixteenth and seventeenth centuries, though, reflect variations on Lamar pottery (Smith 1992:56).

Little is known regarding much of the seventeenth century in interior Georgia, though substantial depopulation occurred after the initial European contacts and this likely caused major disruptions to Native societies, as did economic changes brought on by participation in European trade networks (Loubser and Reed 1997:67). By the eighteenth century, when impacts by English colonization efforts would have been felt, Native groups in the region had undergone significant change. The groups that emerged from this period of upheaval formed a political alliance known as the Creeks that took in a broad region covering portions of present-day Georgia, Alabama, and Tennessee. Creek material culture, which probably reflected amalgams of several traditions, was represented mainly by Chattahoochie Brushed, Ocmulgee Fields Incised, Plain, and Kasita Red Filmed ceramic types that were in use from the mid-eighteenth century to the time of removal in the early nineteenth century (Smith 1992:65). Northern Georgia was also a focus of settlement and culture by historic Cherokee tribes, especially in the eighteenth century. Ceramic types associated with Cherokee sites show a variety of stamped surface treatments and elaborate rim decorations (Smith 1992:67).

Seventeenth and eighteenth-century Native American sites show a range of structures, representing houses, public buildings, and earthworks arranged around central plazas. Buildings were sometimes organized in concentric rings around public spaces, and palisades and/or other defensive structures might enclose entire villages. Other features of Native village sites included storage and waste disposal pits and burials. There is evidence for dispersed community settlement patterns as well. Subsistence practices followed patterns established during the Mississippian period, with certain European foods introduced early after contact (Smith 1992).
III. HISTORIC CONTEXT

At the time of the Civil War, Atlanta was only about 20 years old with a population of around 10,000. The city was limited to what is now considered "downtown," centered by the Five Points area. Three rail lines entered the city; the Georgia Railroad from the east, the Atlanta and West Point Railroad from the southwest, and the Western and Atlantic Railroad from the northwest. The latter, the Western and Atlantic (also known as the Chattanooga and Atlanta), was the rail line immediately southwest of Marietta Street.

By the spring of 1864, the approach of Sherman's army led to the creation of the first comprehensive line of defensive works around Atlanta. These are shown on Plate 51 of the Official Military Atlas of the Civil War (Sketch of the City of Atlanta 1864). While the first defense lines were located south of what is now the Georgia Tech campus, there were three redoubts or forts located beyond the line that were situated within the project area. On Plate 51, these are identified as "X," "Y," and "Z" (Figure 1).

By the summer of 1864, these redoubts were incorporated into a second, outer defensive line that cut across what is now the southern part of the Tech campus (Figure 2). Local Civil War expert Wilbur Kurtz plotted the location of this line and other local Civil War features for a 1938 Chamber of Commerce map of the city designed to capitalize on tourist interest aroused by the imminent release of the film Gone With The Wind (Kurtz 1938). According to Kurtz's map, "X" almost surely became "Fort Hood." By the time of the siege of Atlanta, Fort Hood figured prominently as the city's northwest salient. The identification of "Y" and "Z" is more problematical, but they probably became unnamed bastions within the outer line, east of Fort Hood. "Z," for example, was almost surely located on the hill where Tech's original campus now stands. Another local feature shown on the 1938 Kurtz map is the site of the Ephraim G. Ponder House, located off Marietta Street, just east of Fort Hood.

Even though none of these features are now standing, Kurtz's map leaves little doubt as to the location of the Fort Hood site, which today is situated between Marietta Street and is now Tech Parkway, in the vicinity of Georgia Tech Building No. 137. This location is corroborated by a circa 1911 map of Atlanta, which depicted a small side street called "Fort Hood Place," located in this same area (Kauffman and Kauffman c.1911). During the siege of Atlanta, Federal lines that wrapped around the northern part of the city in July and August of 1864, cut across what is now the northern part of the Tech campus. These lines likely extended east into Midtown Atlanta.

Three developments took place within this area, more or less simultaneously. The first was the industrial development along Marietta Road, now Marietta Street. The second was the residential development adjacent to this industry that would soon form the kernel of a community known as ChastainTown. The third was the establishment, along North Avenue, of the original campus of Georgia Tech, centered around the main Tech campus building, located on high ground (Redoubt "Z") that had been incorporated into the Confederate defense line around Atlanta. All of these developments will be discussed in turn.
Figure 1.
The Vicinity of the Georgia Tech Campus
on Plate 51 of the Official Military Atlas of the Civil War

Source: Davis et al. (2003)
Figure 2. The Vicinity of the Georgia Tech Campus on Plate 88 of the Official Military Atlas of the Civil War

Source: Davis et al. (2003)
The first Sanborn fire insurance map of Atlanta that depicts any part of the project area is dated to 1892 and shows the area along Marietta Street. This map, and other later Sanborn maps, all available in microfilm at the Atlanta History Center Archives, indicate that the area was starting to be used for light industry and commercial development. Both the 1892 and 1899 maps depict this development along Marietta Street, specifically north of North Avenue and south of Wallace Street. From North Avenue to Wallace, south to north, these developments were the Randall Brothers Lumber Yard, the Atlanta Furniture Factory, and the Georgia Rose Houses. North of Wallace, Marietta Street turned residential, with small houses and a few churches.

The first Sanborn map to show residential development beyond Marietta Street was the 1911 edition, with corrections that dated to the 1920s. By 1904, if not before, this area was already settled and identified as Chastaintown (Rogers 1904). Named after Avery Chastain, a local landowner, Chastaintown was a working-class community located along the Southern Railroad, adjacent to Marietta Street, and the Southern Belt Railroad to the north. During this period, the Atlantic Steel complex was being established along the Southern Railroad, north of Fourteenth Street. Yet, for many years, the core of this community remained along Hemphill Avenue and adjacent parts of Emmett Street, later known as Tenth Street. Although it had an industrial base and was incorporated into Atlanta early, the community retained a rural flavor. Farm plots were often interspersed among the houses, and from the earliest days, the community was known as a horse-trading center (Robinson 1991; Tentative Zone Plan, Atlanta City Planning Commission, c. 1922). This is certainly corroborated by the 1911/1920 Sanborn of the area, which showed frequent gaps between houses throughout the community. The houses themselves were almost uniformly small, single-family, frame dwellings, with only a few commercial properties located along Hemphill. This situation was still basically the same in the 1931/1932 Sanborn map, corrected to around 1950, even though there were, by then, a few brick houses as well as some duplexes and apartment buildings.

From the beginning, Chastaintown was always more concentrated in the west half rather than the east half of what is now the Tech campus. Not only was this due to the presence of the railroad and Marietta Street, but also the presence of Georgia Tech to the east. Skirting Tech, Chastaintown eventually spread to the north and northeast, toward Atlantic Steel. The new area became known as Home Park Chastaintown after the Home Park School, located along State Street between Tenth and Fourteenth streets, opened in 1911. As Home Park grew, the entire community assumed the name of "Home Park" (Robinson 1991).

By 1940, the original community of Chastaintown was in decline. According to a map from this time period, one-half of the housing was considered substandard, and there were still extensive empty areas between Tenth, Eighth, Williams, and Kontz (now Atlantic). There were also a sizable percentage of African-American residents in Chastaintown’s southwest corner, south of Fifth Street and west of Hemphill, adjacent to State (Housing Authority, c. 1940).

In 1940, the Georgia Tech campus was still very small. With the exception of some major athletic fields on the north side of campus, it was not much larger than it had been in the early 1900s, when the campus hugged the hill just north of North Avenue. A campus map dated to 1936, for example, showed that the campus had only grown west to Cherry Street and north to Third Street (Diagram of Tech Campus 1936). Even as late as the 1950s, the vast majority of the campus was located east of Atlantic Street.
The rapid expansion of Georgia Tech into Chastaintown did not begin until the 1960s. As older residents died and others moved to the suburbs, students began to move into the area to take advantage of the rising number of rental properties (Robinson 1991). Huge blocks of Chastaintown were soon swallowed, as Tech bought up much of the land south of Eighth Street (Untitled Map of Georgia Tech campus, c.1972/1973).

By the early 1970s, the area was laid out with new streets that exist today: Ferst Drive incorporated parts of Ponder Avenue, Clayton Street, and Sixth Street, and most of the streets inside this arc were obliterated to make way for new construction. Tech Parkway was laid out immediately to the southwest to relieve the traffic on Ferst. The campus itself expanded westward to Northside, and northwest to Eighth Street. The only part of Chastaintown or Home Park left in the modern campus area was located in the northwest corner, bounded by Northside, Eighth, Tenth, and State streets. The final spurt of expansion took this area in the years after 1973, so that by the time of the Atlanta Olympics in 1996, the campus boundaries extended to the core buildings covered in the 2001 study.

Georgia Tech has acquired a number of properties outside the core campus since 2001. The Tech campus now spans the interstate connector to include several properties along West Peachtree Street. Additionally, campus properties extend north of Eleventh Street and Fourteenth Street.
IV. PREVIOUS ARCHAEOLOGICAL SITES AND STUDIES

A total of eight archaeological sites have been identified on or adjacent to campus properties. All of the recorded sites are historic date to the late nineteenth or early twentieth century. In large, these sites reflect the impact continual urban residential and commercial growth has had on the preservation of such resources. For example, the structures at three of the recorded sites (9FU252, 9FU253, and 9FU334) have been razed to accommodate new development. While change is a constant in an urban context it does not exclude the potential for preservation artifacts or features from earlier activity. Table 1 provides a summary of the sites found on and around the Georgia Tech campus (Figure 3).

Table 1. Previously Recorded Sites on and in the Vicinity of the Georgia Tech Campus

<table>
<thead>
<tr>
<th>State Site Number</th>
<th>Site Description</th>
<th>NRHP Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>9FU252</td>
<td>Nineteenth-Twentieth-Century Housing Project, Techwood Homes</td>
<td>Listed</td>
</tr>
<tr>
<td>9FU253</td>
<td>Nineteenth-Twentieth-Century Housing Project, Clark Howell Homes</td>
<td>Listed</td>
</tr>
<tr>
<td>9FU334</td>
<td>Nineteenth-Twentieth-Century Steel Truss Bridge</td>
<td>Unknown</td>
</tr>
<tr>
<td>9FU410</td>
<td>Nineteenth-Twentieth-Century Artifact Scatter</td>
<td>Not Eligible</td>
</tr>
<tr>
<td>9FU515</td>
<td>Nineteenth-Twentieth-Century Artifact Scatter and Barn</td>
<td>Unknown</td>
</tr>
<tr>
<td>9FU516</td>
<td>Nineteenth-Twentieth-Century Artifact Scatter</td>
<td>Not Eligible</td>
</tr>
<tr>
<td>9FU517</td>
<td>Twentieth-Century Artifact Scatter, Ephraim Ponder House (vicinity)</td>
<td>Unknown</td>
</tr>
<tr>
<td>9FU518</td>
<td>Nineteenth-Twentieth Century Artifact Scatter, Fort Hood (vicinity)</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

Two of the previously recorded sites are listed on the National Register of Historic Places (NRHP). Sites 9FU252 and 9FU253 served as housing projects in the early twentieth century. Additionally, 9FU252, Techwood Homes, is also listed as a National Register Historic District. Site 9FU518 was recorded within the boundaries of the Means Street Historic District. However, the site was not assessed as a contributing element to the district. The Techwood Homes and Means Street Districts are two of a total of four registered districts that fall within or adjacent to the Georgia Tech campus. The remaining districts consist of Georgia Tech Historic District, which encompasses the oldest extant campus buildings, and the Southern Railway North Avenue Yards Historic District located south of the TEO Bullet Building along the CSX corridor (Figure 3).

A total of five archaeological studies have been conducted within and adjacent to the Georgia Tech campus. Beginning with New South Associates’ initial archaeological sensitivity study in 2001, four additional surveys addressed areas on campus and adjacent to campus holdings along the CSX rail corridor and on Fourteenth street. A summary of each study is provided below (Figure 4).
Figure 3.
Identified Archaeological Sites, National Register Districts, and Archaeological Probability Areas in the Vicinity of Georgia Tech

Source: GA Tech GIS Center (2009), Georgia Archaeological Site File (2009), Jordan (2005), Swanson (2001), Atlanta Regional Commission
Figure 4.
Previous Archaeological Surveys in the Vicinity of Georgia Tech

The 2001 archaeological probability study used archival and topographical data to isolated areas on campus that may contain undiscovered resources. The study identified seven areas with potential for archaeological sites. Portions of the campus outside of these probability areas were identified as having a low potential for sites largely due to the impact of development. Archival research was supplemented by a walk over of the campus to ground-truth developmental impact. This study was limited to the core campus located roughly between Tenth Street, Tech Parkway, the 75/85 Connector, and North Avenue (Figure 4).

Three areas were identified as having medium probability for archaeological resources. Medium Probability Area 1 was located between North Avenue, Marietta Street, and Wallace Street, adjacent to the rail corridor. Medium Probability Area 2 was located at the northern edge of the large, low hill that dominates the center of the Tech campus north of Ferst Drive. Medium Probability Area 3 was identified within the original core of the Tech campus, in the heart of the Georgia Tech Historic District (Swanson 2001).

Four areas were identified as having a high probability for archaeological resources. High Probability Area 1, between Tech Parkway and Marietta Street, was the location of two significant resources associated with the Civil War, Fort Hood and the Ephraim G. Ponder House (Swanson 2001). High Probability Area 2 was located northwest of the intersection of Ferst Drive and Dalney Street. Early twentieth-century maps show that this area was a residential district and has seen a low level of impact from development. High Probability Area 3, located southwest of the intersection of State Street and Tenth Street, was the location of nineteenth- and twentieth-century houses, as well as Civil War period earthworks (Swanson 2001). High Probability Area 4 was located south of Tenth Street between Fowler Street and Atlantic Drive. Area 4 was considered a high probability area because much of the land appears to be relatively undisturbed by modern development (Figure 3).

New South Associates Inc. conducted a Phase I Archaeological Survey in August and September 2001 of areas planned for use in the Athens-Atlanta Rail Corridor. These areas included proposed station locations and additional track locations. The study areas were located in six Georgia counties including Fulton, DeKalb, Gwinnett, Barrow, Oconee, and Clarke. A total of 54.07 miles of additional track and 134.1 acres of station locations were surveyed. The survey identified one site in Fulton County in the vicinity of Georgia Tech, 9FU410. The survey focused on the rail corridor that overlaps the Means Street and Southern Railway historic districts and serves as the eastern limits of the current study area (Hamby and Matternes 2002).

Georgia Department of Transportation archaeologists conducted a Phase I survey Midtown streetscape improvements as part of the Livable Centers Initiative in 2003. The proposed project consisted of approximately 1,800 meters (5,900 feet) of streetscape and pedestrian improvements on West Peachtree Street in Midtown Atlanta between North Avenue and Fourteenth Street. The project was located adjacent to the Academy of Medicine, LeCraw Auditorium, and other administrative buildings on Fourteenth Street. The proposed plans for West Peachtree Street involved pedestrian and transportation improvements to the right-of-way as dictated by Special Public Interest Zone 16, recently approved by the Atlanta City Council. Within the right-of-way, transportation and pedestrian improvements included the addition of on-street parking, development of a continuous, dedicated bicycle lane and streetscape improvements including new sidewalks, street trees, street furniture, and enhanced street and sidewalk lighting. The archaeological survey resulted in the identification of no resources (Gardner and Anthony 2003).
R.S. Webb and Associates conducted an archaeological reconnaissance of portions of the Georgia Institute of Technology campus in 2005. The reconnaissance was conducted as preparation for a project to replace existing overhead electric power lines with underground cables throughout much of the campus. Existing underground facilities were used for some of the new cables while some areas required construction of new underground duct banks. The average size of excavations for the new duct bank corridors measured approximately nine feet wide by eight feet deep. Excavations at manhole locations were approximately 20 feet long by 20 feet wide and 13 feet deep. Horizontal boring access pits were approximately 50 feet long by 16 feet wide by 12 feet deep (Jordan 2005a).

The excavation of shovel test pits was limited to areas of high archaeological potential to be effected by the duct bank project. Areas of high archaeological potential were defined by the 2001 archaeological assessment of the Georgia Tech campus by New South Associates, Inc. (Swanson 2001). This approach was the result of consultation between, Georgia Tech, ATC Associates, Inc., and the Georgia Department of Natural Resources, Historic Preservation Division (HPD) in 2004 (Jordan 2005a).

R.S. Webb and Associates conducted shovel testing of the duct bank project area within three of the four high probability areas defined by the 2001 study. Four archaeological sites were identified. Though the sites’ boundaries were not fully investigated during the reconnaissance, no further examination of sites 9FU515, 9FU516, and 9FU518 was recommended. Site 9FU516 was recommended not eligible for the NRHP, while the eligibility of sites 9FU515 and 9FU518 remains unknown. Further Phase II examination of 9FU517 was recommended to clarify the site’s possible association with the Ephraim G. Ponder House and its potential eligibility for the NRHP (Jordan 2005a).

Goals of the Phase II study of 9FU517 were to fully delineate site boundaries and evaluate eligibility for the National Register of Historic Places under Criterion D. To accomplish these goals, 14 shovel test pits were excavated, supplementing the seven Phase I shovel test pits. Additionally, one 50x50-centimeter (1.6x1.6-foot) test unit was excavated. The Phase II excavations resulted in the recovery of 22 artifacts, augmenting the total assemblage to 53 artifacts. Artifact density was considered low, and a majority of the finds resulted from disturbed contexts. None of the assemblage dated to the antebellum period; and therefore, could not be linked to the occupation of the Ephraim G. Ponder House. No further work was recommended and 9FU517 was recommended not eligible for the National Register (Jordan 2005b).

In 2006, URS Corporation conducted a Phase I survey at several Midtown Atlanta intersections. The project intersection at Fifth and West Peachtree is located east of the LeCraw Auditorium. This project proposed bringing existing non-ADA compliant pedestrian ramps into compliance with ADA regulations and install traffic signal upgrades at 11 intersections. Upgrading pedestrian ramp included the intersections of Piedmont Avenue at Twelfth Street, Juniper Street at Seventh Street, Juniper Street at Third Street, Spring Street at Sixteenth Street, Spring Street at Fourteenth Street, West Peachtree Street at Fifth Street, and West Peachtree Street at Pine Street. Pedestrian traffic signal installations were to effect the following intersections: Peachtree Street at Sixth Street, Juniper Street at Sixth Street, Spring Street at Twelfth Street, Piedmont Avenue at Eighth Street, and West Peachtree Street at Twelfth Street. No archaeological resources were discovered as a result of the study (Smith 2006).
V. RECOMMENDATIONS

Review of the files at the Georgia Archaeological Site Files in Athens revealed five archaeological studies have been conducted on or adjacent to Georgia Tech campus properties, and eight archaeological sites have been identified on campus or near campus holdings. The 2001 examination of historical background material and topographic and hydrographic data identified six areas on the Georgia Tech campus with potential to possess prehistoric and/or historic archaeological resources (Swanson 2001). The 2001 study also singled out areas that could be associated with significant Civil War activity from 1864 (Figure 5).

The properties acquired by Georgia Tech since 2001 fall in highly urbanized landscapes and not on high ground adjacent to historic stream paths. Therefore, it is not necessary to create additional probability areas to those defined in the 2001 study. However, further examination of historic period maps necessitate the changing of the status of at least one of the probability areas defined as “medium” by the 2001 study.

The Georgia Tech National Register Historic District features a number of nineteenth-century buildings original to the campus. However, some of these early structures are no longer present. The Sanborn Fire Insurance map of 1899 depicts the Lettie Pate Whitehead Evans Administration Building and the French Building and several buildings no longer present. Three structures in particular have the potential to exist as archaeological deposits, the machine shop/foundry, the blacksmith shop, and a well house (Figure 6). All these buildings lie between the Lettie Pate Whitehead Evans Administration Building and the Coon Building, east of the intersection of Cherry Street and Uncle Heine Way. Examination of aerial photography revealed the blacksmith shop structure existed as late as 1949.

Given the size and nature of these buildings, it is likely archaeological features associated with the structures remain below the ground surface. Therefore, the areas initially defined as Medium Probability Area 3 should be considered an area with a high potential for archaeological deposits significant to the history of the Georgia Institute of Technology.

The methodology applied during the archaeological survey of the duct bank project grew from consultation that included the HPD (Jordan 2005a and 2005b). The approach limited shovel test pit excavation to the areas defined as archaeologically sensitive in New South Associates’ 2001 study. This methodology should be maintained for projects, such as landscaping activities, which will result in ground disturbance below eight inches, and/or groundbreaking activities such as systems installation that require excavation below eight inches. The results of archaeological survey should be provided to campus facilities staff and outside contractors and referenced in campus maps prior to conducting projects that disturb subsurface deposits.
Figure 5.
Potential Locales for Civil War Period Resources in the Vicinity of Georgia Tech

Figure 6.
Sanborn Fire Insurance Map, Atlanta, Georgia, Sheet 109, 1899

Source: Digital Library of Georgia (2008)
REFERENCES CITED

Anderson, David G. and Glen T. Hanson

Anderson, David G. and J.W. Joseph

Anderson, David G., R. J. Ledbetter, and Lisa O’Steen

Atlanta City Planning Commission
1922 Tentative Zone Plan, Atlanta City Planning Commission. Map on file, Atlanta History Center Archives.

Blanton, Dennis B., S. Bryne, and Mary Beth Reed
1987 Cultural Resources Investigations of the Proposed East Tennessee-Ball Ground Pipeline Corridor. Report prepared by Garrow and Associates. Submitted to the Atlanta Gas Light Company, Atlanta, Georgia.

Blanton, Dennis B. and Kenneth E. Sassaman

Braley, Chad O.

Cable, John S. and Leslie E. Raymer
1991 Archaeological Test Excavations at the Lake Acworth Site (9CO45) and the Butler Creek Site (9CO46), Allatoona Lake, Cherokee and Cobb Counties, Georgia. Prepared by New South Associates. Submitted to the Mobile Corps of Engineers.
Caldwell, J.
1952 *Survey and Excavations in the Allatoona Reservoir, Northern Georgia.* Ms. on file, No. 151, Department of Anthropology, University of Georgia, Athens.

Cambron, James W., and David C. Hulse

Coe, Joffre L.

Crook, Morgan R.

Davis, George, Leslie Perry, Joseph Kirkley, and Calvin Cowles

Ford, Richard I.

Gardner, Jeffery W. and Eric Anthony Duff
2003 *Archaeological Survey of the West Peachtree Street Livable Centers Initiative (LCI) Improvement Project, Atlanta (Fulton County), Georgia.* Georgia Department of Transportation, Office of Environment and Locations, Atlanta, Georgia.

Garrow, Patrick H.

Georgia Institute of Technology Archive
1936 *Diagram of Tech Campus 1936 "Diagram of Tech Campus for Visitors' Convenience," Technique, November 13, Individual map on file.*

1972 *Untitled Map of Georgia Tech Campus.* Blueprint contour and building map on file, Georgia Tech Archives

Goodyear, Albert C., Ill

Griffin, James B.
1952 *Archeology of the Eastern United States.* University of Chicago, Chicago.
Hally, David J., and James L. Rudolph

Hamby, Theresa M. and Jennifer Matternes

Hollenbach, Kandace

Housing Authority, City of Atlanta

1940 *Land Use Map of Atlanta, Housing Authority of the City of Atlanta.* Map on file, Atlanta History Center Archives.

Jeffries, Richard W.

1976 The Tunnacunnee Site: Evidence of Hopewell Interaction in Northwest Georgia. *Anthropological Papers of the University of Georgia* No. 1, Athens.

Jennings, Jesse D.

Jordan, William R.

Kauffman, O.F. and Ira U. Kauffman

1911 *Map of City of Atlanta, Georgia.* Kauffman and Brother, civil, Sanitary and Landscape Engineers, Candler Building, Atlanta. Map on file, Atlanta History Center Archives.
Kurtz, Wilbur G.

1938 Map of Atlanta as of 1938, showing the Field and Fortified Lines of the Confederate Forces, Together with Those of the Federal Armies, Also the Fields of the Three Major Engagements, During the Summer of 1864. Historical Data by Wilbur G. Kurtz, August 1938. Produced by the Atlanta Chamber of Commerce. On file, Atlanta History Center Kneberg, M.

Loubser, Johannes H.N., and Mary Beth Reed

Robinson, Roderick

Rogers, Ransom

1904 Map of Atlanta. Compiled by Ransom Rogers, Civil Engineer and Surveyor. Map on file, Atlanta History Center Archives.

Rudolph, Teresa P.

Sassaman, Kenneth E., Mark J. Brooks, Glen T. Hanson, and David G. Anderson

Smith, Marvin T.

Smith, Patrick

Stanyard, William F.

Swanson, Mark
2001 *An Assessment of Prehistoric and Historic Archaeological Site Potential on the Georgia Tech Campus Atlanta, Georgia.* Prepared by New South Associates, Inc. Prepared for the Georgia Institute of Technology, Atlanta, Georgia.

U.S. Coast and Geodetic Survey and City of Atlanta Mapping Division
1927 *Topographic Maps of the City of Atlanta.* (Specifically, Sheets 1-3, 18, 19, and 59). Maps on file, Atlanta History Center Archives.

Walker, Renee

Wauchope, R.

Whatley, John S.

Windham, R. Jeannine

Wood, W. Dean and William R. Bowen
APPENDIX A: GEORGIA
ARCHAEOLOGICAL SITE FORMS
GEORGIA ARCHAEOLOGICAL SITE FORM
1990

Official Site Number: 9FU252

Institutional Site Number: T-1 **Site Name:** Techwood Homes

County: Fulton **Map Name:** Northwest Atlanta **USGS OR USNOAA**

UTM Zone: 17N **UTM East:** 3741840 **UTM North:** 3738590 3738650 3738900

Owner: Atlanta Housing Authority **Address:** 3739650, 3739940

Site Length: 650 meters **Width:** 200 meters **Elevation:** + - 197 meters

Orientation:

Kind of Investigation:

Standing Architecture:
1. Present 2. Absent

Site Nature:
5. Unknown 6. Underwater

Midden:
1. Present 2. Absent 3. Unknown

Features:
1. Present 2. Absent 3. Unknown

Percent Disturbance:
1. None 2. Greater than 50 3. Less than 50 4. Unknown

Type of Site (Mill, Mound, Quarry, Lithic Scatter, etc.): late 19th-early 20th c. urban residential/commercial district, mid-late 20th c. U. S. government public housing project.

Topography (Ridge, Terrace, etc.):

Current Vegetation (Woods, Pasture, etc.): infrequent grassy lawns and hardwoods in developed urban area.

Additional Information: Site contains features and midden from late 19th-early 20th c. commercial/residential occupation, and features from mid 20th century housing project.

SKETCH MAP
(Include sites, roads, streams, landmarks)

OFFICIAL MAP
(Xerox of proper map)
State Site Number: 9Fv 252 Institutional Site Number: T-1

National Register Level of Significance: 1. Local 2. State 3. National

RECORD OF INVESTIGATIONS
Supervisor: Jeff Gardner Affiliation: Brockington & Associates, Inc. Date: 7/7/95

Report Title:

Other Reports: none known

Artifacts Collected: glass bottles, porcelain, whiteware, stoneware, ironstone, bricks

Location of Collections: Brockington & Associates (temporary)
Location of Field Notes: same
Private Collections: none known

Name: _____________________ Address: _____________________

CULTURAL AFFINITY

Cultural Periods: late 19-20th century

Phases: _____________________

FORM PREPARATION AND REVISION

Date Name Institutional Affiliation
7/7/95 Bill Jordan Brockington & Associates, Inc.
GEORGIA ARCHAEOLOGICAL SITE FORM
1990
Official Site Number: 9FU253

Institutional Site Number: CH-1 Site Name: Clark Howell Homes
County: Fulton Map Name: Northwest Atlanta USGS OR USNOAA
UTM Zone: 18N UTM East: 741190 UTM North: 3738990, 3739650,
Owner: Atlanta Housing Authority Address: 3739650, 3738990
Site Length: 650 meters Width: 250 meters Elevation: + - 197 meters
Standing Architecture: 1. Present 2. Absent
 5. Unknown 6. Underwater
Type of Site (Mill, Mound, Quarry, Lithic Scatter, etc.): late 19th-early 20th c. urban
residential/commercial district, mid-late 20th c. U. S. government public housing project.
Topography (Ridge, Terrace, etc.):

Current Vegetation (Woods, Pasture, etc.): infrequent grassy lawns and hardwoods in developed
urban area.

Additional Information: Site contains features and midden from late 19th-early 20th c.
commercial/residential occupation, and features from mid 20th century housing project.

SKETCH MAP
(Include sites, roads, streams, landmarks)

OFFICIAL MAP
(Xerox of proper map)
State Site Number: 253 Institutional Site Number: CH-1

National Register Level of Significance: 1. Local 2. State 3. National

RECORD OF INVESTIGATIONS
Supervisor: Jeff Gardner Affiliation: Brockington & Associates, Inc. Date: 7/7/95
Report Title:

Other Reports: none known

Artifacts Collected: glass bottles, porcelain, whiteware, stoneware, ironstone, bricks

Location of Collections: Brockington & Associates (temporary)
Location of Field Notes: same
Private Collections: none known

Name: Address:

CULTURAL AFFINITY

Cultural Periods: late 19-20th century

Phases:

FORM PREPARATION AND REVISION

Date: 7/7/95 Name: Bill Jordan Institutional Affiliation: Brockington & Associates, Inc.
GEORGIA ARCHAEOLOGICAL SITE FORM
1990
Official Site Number: 9FU334

Institutional Site Number: Site Name: Marietta Road Bridge
County: Fulton Map Name: Northwest Atlanta USGS OR USNOAA
UTM Zone: 16 UTM East: 739680 UTM North: 3741300
Owner: Address:
Site Length: unknown meters Width: unknown meters Elevation: +291 meters
Standing Architecture: 1. Present 2. Absent
5. Unknown 6. Underwater
Type of Site (Mill, Mound, Quarry, Lithic Scatter, etc.): Whipple Truss bridge

Topography (Ridge, Terrace, etc.):

Current Vegetation (Woods, Pasture, etc.): city landscaping

Additional Information: The bridge was brought from SC to GA in 1905. It was originally used for rail cars but when the cars became too heavy for the bridge, it was adapted for automobile and pedestrian use.
State Site Number: 9FU334

National Register Level of Significance: 1. Local 2. State 3. National

RECORD OF INVESTIGATIONS

Supervisor: Darlene Roth Affiliation: The History Group, Inc. Date: Jan. 1979

Report Title: The Marietta Road Bridge from Rural Span to Urban Viaduct

Other Reports: Georgia Archaeological Site File Report No. 197

Artifacts Collected: none collected

Location of Collections:
Location of Field Notes:
Private Collections:

Name: ___________________________ Address: ___________________________

CULTURAL AFFINITY

Cultural Periods: Historic European

Phases: Late Nineteenth Century and Early Twentieth Century

FORM PREPARATION AND REVISION

Date 12-10-98
Name Caryn DesMarais
Institutional Affiliation Georgia Archaeological Site File
GEORGIA ARCHAEOLOGICAL SITE FORM
1990
Official Site Number: 9FU410

Institutional Site Number: 9Fu-NSA1
Site Name:
County: Fulton County
Map Name: Northwest Atlanta 7.5 Minut USGS or USNOAA
UTM Zone: 16
UTM East: 739420
UTM North: 3740604
Owner:
Address:

<table>
<thead>
<tr>
<th>Site Length:</th>
<th>10 meters</th>
<th>Width:</th>
<th>30 meters</th>
<th>Elevation:</th>
<th>+ - 290 meters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standing Architecture:</td>
<td>1. Present</td>
<td>2. Absent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type of Site (Mound, Mill, Quarry, Lithic Scatter, etc.):</td>
<td>Late 19th - 20th century artifact scatter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Topography (Ridge, Terrace, etc.): Near railroad grade.

Current Vegetation (Woods, Pasture, etc.): None, industrial area of railroads and warehouses.

Additional Information: This site was identified solely on the basis of a surface scatter of possible late 19th - mid 20th century artifacts. The site appears to be the result of years of occupation and use of both the railroad and the warehouse district.
State Site Number: 9FU410 Institutional Site Number: 9Fu-NSA1

Public Status: 1. National Historic Landmark 2. National Natural Landmark

National Register Standing: 1. Determined Eligible 2. Recommended Ineligible

National Register Level of Significance: 1. Local 2. State 3. National

Preservation State (Select up to Two): 1. Undisturbed 2. Cultivated 3. Eroded
9. Graded 10. Razed

RECORD OF INVESTIGATIONS

Supervisor: Theresa M. Hamby Affiliation: New South Associates Date: 09/26/01
Report Title: Phase 1 Archaeological Survey of the Atlanta-Athens Rail Corridor

Other Reports: __

Location of Collections: University of West Georgia
Location of Field Notes: University of West Georgia
Private Collections: __

. Name: ___________________________ Address: ________________________________

CULTURAL AFFINITY

Cultural Period(s): 19th and 20th Century

Phases (if known): ________________________________

FORM PREPARATION AND REVISION

<table>
<thead>
<tr>
<th>Date</th>
<th>Name</th>
<th>Institutional Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>00/00/00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>00/00/00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>00/00/00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
GEORGIA ARCHAEOLOGICAL SITE FORM
1990
Official Site Number: 9FU515

Institution Site Number: 1
Site Name:

County: Fulton
Map Name: Northwest Atlanta, GA
USGS or USNOAA

UTM Zone: 16
UTM East: 740800
UTM North: 3740692

Owner:
Address:

Site Length: 40 meters
Width: 20 meters
Elevation: ± 314 meters

Orientation: 1. N-S
2. E-W
3. NE-SW
4. NW-SE
5. Round
6. Unknown

Kinds of Investigation:
1. Survey
2. Testing
3. Excavation
4. Documentary
5. Hearsay
6. Unknown
7. Amateur

Standing Architecture:
1. Present
2. Absent

Site Nature:
1. Plowzone
2. Subsurface
3. Both
4. Only Surface Known
5. Unknown
6. Underwater

Midden: 1. Present
2. Absent
3. Unknown
Features: 1. Present
2. Absent
3. Unknown

Percent Disturbance:
1. None
2. Greater than 50
3. Less than 50
4. Unknown

Type of Site (Mill, Mound, quarry, Lithic Scatter, etc.): historic-house site

Topography (Ridge, Terrace, etc.): Ridge

Current Vegetation (Woods, Pasture, etc.): grassed yard

Additional Information: Site is a historic house site. A late 19th-early 20th century barn which was associated with the former house is located west of the site. This is the edge of a late 19th-early 20th century neighborhood which is being absorbed into the Georgia Tech campus. Site boundaries were not fully delineated. It is likely that the site extends to the west, near the barn.

SKETCH MAP
(include sites, roads, streams, landmarks)

OFFICIAL MAP
(xerox of proper map)
State Site Number: 9FU515 Institutional Site Number: 1

National Register Level of Significance: 1. Local 2. State 3. National

RECORD OF INVESTIGATION

Supervisor: Bill Jordan Affiliation: R.S. Webb & Associates Date: January 11, 2005

Report Title: Letter Report: Cultural Resources Reconnaissance of Selected Areas, Georgia Institute of Technology Ductbank Project, Fulton County, Georgia. On file at Georgia HPD, Atlanta, GA

Artifacts Collected: whiteware (n=1), brick fragments (n=7), mortar (n=2), window glass (n=1), and coal (n=2)

Location of Collections: R.S. Webb & Associates, Holly Springs, GA (temporary)
Location of Field Notes: R.S. Webb & Associates, Holly Springs, GA (temporary)
Private Collections:

Name: Address:

CULTURAL AFFINITY

Cultural Periods: Late 19th-early 20th century

Phases:

FORM PREPARATION AND REVISION

Date Name Institutional Affiliation
1/11/05 Bill Jordan R. S. Webb & Associates
GEORGIA ARCHAEOLOGICAL SITE FORM

Institution Site Number: 2
Site Name:
County: Fulton
Map Name: Northwest Atlanta, GA
UTM Zone: 16
UTM East: 740739
UTM North: 3740437
Owner: Address:
Site Length: 10 meters Width: 10 meters Elevation: +.299 meters
Standing Architecture: 1. Present 2. Absent
5. Unknown 6. Underwater
Type of Site (Mill, Mound, quarry, Lithic Scatter, etc.): historic-house site
Topography (Ridge, Terrace, etc.): Ridge
Current Vegetation (Woods, Pasture, etc.): sodded grass lawn

Additional Information: Site is a historic house site. A standing early 20th century house is located west of the site. This is within a former late 19th-early 20th century neighborhood which is surrounded by the Georgia Tech campus. The site is surrounded by roads, sidewalks, parking lots and other modern development.

SKETCH MAP
(Include sites, roads, streams, landmarks)

OFFICIAL MAP
(Xerox of proper map)
State Site Number: 9FU516 Institutional Site Number: 2

National Register Level of Significance: 1. Local 2. State 3. National

RECORD OF INVESTIGATION

Supervisor: Bill Jordan Affiliation: R.S. Webb & Associates Date: January 11, 2005

Report Title: Letter Report: Cultural Resources Reconnaissance of Selected Areas, Georgia Institute of Technology Ductbank Project, Fulton County, Georgia. On file at Georgia HPD, Atlanta, GA

Artifacts Collected: plain hard paste porcelain (n=1), clear bottle glass (n=2), machine-made brick (n=2), a brass electrical connector, wire nails (n=2), and coal (n=1)

Location of Collections: R.S. Webb & Associates, Holly Springs, GA (temporary)
Location of Field Notes: R.S. Webb & Associates, Holly Springs, GA (temporary)
Private Collections:

Name: Address:

CULTURAL AFFINITY

Cultural Periods: Late 19th-early 20th century

Phases:

FORM PREPARATION AND REVISION

Date Name Institutional Affiliation
1/11/05 Bill Jordan R.S. Webb & Associates
GEORGIA ARCHAEOLOGICAL SITE FORM
1990

Institution Site Number: 3
County: Fulton
Site Name:
Map Name: Northwest Atlanta, GA
UTM Zone: 16
UTM East: 740510
UTM North: 3739967
Official Site Number: 9F0517
USGS or USNOAA
Owner:
Address:
Site Length: 40 meters
Width: 15 meters
Elevation: +303 meters
Orientation: 1. N-S
2. E-W
3. NE-SW
4. NW-SE
5. Round
6. Unknown
Kinds of Investigation:
1. Survey
2. Testing
3. Excavation
4. Documentary
5. Hearsay
6. Unknown
7. Amateur
Standing Architecture:
1. Present
2. Absent
3. Unknown
Site Nature:
1. Plowzone
2. Subsurface
3. Both
4. Only Surface Known
5. Unknown
6. Underwater
Midden:
1. Present
2. Absent
3. Unknown
Features:
1. Present
2. Absent
3. Unknown
Percent Disturbance:
1. None
2. Greater than 50
3. Less than 50
4. Unknown
Type of Site (Mill, Mound, quarry, Lithic Scatter, etc.):
Historic Scatter
Topography (Ridge, Terrace, etc.): Ridge
Current Vegetation (Woods, Pasture, etc.): Sodded Grass Lawn

Additional Information: Site is a historic artifact scatter surrounded by modern improvements (roads, sidewalks, parking lots and other modern, development) on the Georgia Tech campus. The site boundaries were not fully delineated. Swanson (2001:see reverse) indicates that this area is near the location of the antebellum Ephriam G. Ponder House. Most of the shovel tests indicate heavy disturbance, and some of the artifacts may be from a 20th century commercial building. The artifacts may have been redeposited in this location.

SKETCH MAP
(Include sites, roads, streams, landmarks)

OFFICIAL MAP
(Xerox of proper map)
State Site Number: 9FU517 Institutional Site Number: 3

Public Status:
1. National Historic Landmark
2. National Natural Landmark
3. Georgia Register
4. Georgia Historic Trust
5. HABS
6. HAER

National Register Standing:
1. Determined Eligible
2. Recommended Ineligible
3. Recommended Eligible
4. Nominated
5. Listed
6. Unknown
7. Removed

National Register Level of Significance:
1. Local
2. State
3. National

Preservation State (Select up to Two):
1. Undisturbed
2. Cultivated
3. Eroded
4. Submerged
5. Lake Flooded
6. Vandalized
7. Destroyed
8. Redeposited
9. Graded
10. Razed

Preservation Prospects:
1. Safe
2. Endangered by: Utilities Construction
3. Unknown

RECORD OF INVESTIGATION

Supervisor: Bill Jordan Affiliation: R.S. Webb & Associates Date: January 11, 2005

Report Title: Letter Report: Cultural Resources Reconnaissance of Selected Areas, Georgia Institute of Technology Duckbank Project, Fulton County, Georgia. On file at Georgia HPD, Atlanta, GA

Artifacts Collected: bottle glass [clear (n=6); milkglass (n=1)], brick [machine-made (n=1); UID (n=5)], a linoleum fragment, a fragment of green painted plaster, window glass (n=3), coal (n=2), and UID iron fragments (n=3)

Location of Collections: R.S. Webb & Associates, Holly Springs, GA (temporary)
Location of Field Notes: R.S. Webb & Associates, Holly Springs, GA (temporary)
Private Collections:

Name: ____________________ Address: ________________________

CULTURAL AFFINITY

Cultural Periods: probably 20th century

Phases:

FORM PREPARATION AND REVISION

Date: 1/11/05 Name: Bill Jordan Institutional Affiliation: R. S. Webb & Associates
Additional Information: Site is a historic artifact scatter. Because the site is in a parking lot surrounded by modern improvements (roads, sidewalks, and other modern development) on the Georgia Tech campus, only a small area is available for shovel testing. Swanson (2001; see reverse) indicates that this area is the location of Confederate Civil War earthworks which ran parallel to Marietta Street, just south of Fort Hood.
State Site Number: 9FU518
Institutional Site Number: 4

Public Status: 1. National Historic Landmark 2. National Natural Landmark

National Register Standing: 1. Determined Eligible 2. Recommended Ineligible

National Register Level of Significance: 1. Local 2. State 3. National

Preservation State (Select up to Two): 1. Undisturbed 2. Cultivated 3. Eroded
9. Graded 10. Razed

3. Unknown

RECORD OF INVESTIGATION

Supervisor: Bill Jordan
Affiliation: R.S. Webb & Associates
Date: January 11, 2005

Report Title: Letter Report: Cultural Resources Reconnaissance of Selected Areas, Georgia Institute of Technology Ductbank Project, Fulton County, Georgia. On file at Georgia HPD, Atlanta, GA

Artifacts Collected: bottle glass (clear (n=1), amber (n=2), aqua (n=1)), a machine-made brick fragment, and a wire nail.

Location of Collections: R.S. Webb & Associates, Holly Springs, GA (temporary)
Location of Field Notes: R.S. Webb & Associates, Holly Springs, GA (temporary)
Private Collections:

Name:
Address:

CULTURAL AFFINITY

Cultural Periods: 19th-20th century

Phases:

FORM PREPARATION AND REVISION

<table>
<thead>
<tr>
<th>Date</th>
<th>Name</th>
<th>Institutional Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/11/05</td>
<td>Bill Jordan</td>
<td>R.S. Webb & Associates</td>
</tr>
</tbody>
</table>
Georgia Standards and Guidelines for Archaeological Investigations

(Revised 2019)

Georgia Council of Professional Archaeologists

Whereas, the Georgia Council of Professional Archaeologists was organized in 1988 as a body of archaeologists who practiced their profession in the State of Georgia and were concerned with the State of Archaeology in Georgia, these proposed standards are intended to improve the state of Archaeology in this State.

Acknowledgments: The Georgia Council of Professional Archaeologists (GCPA) would like to recognize our colleagues in South Carolina, including the Council of South Carolina Professional Archaeologists, whose published standards offered a useful template as this document was developed. Thanks go to the members of the 2001 Research Standards Committee, as appointed by the GCPA. Committee Members include Rob Benson, Paul Brockington, Jr, Daniel T. Elliott, Patrick H. Garrow, Connie Huddleston, Thomas Neumann, William Stanyard, and Brian Thomas. GCPA committee members who worked on the 2013 metal detector revisions included Scott Butler, Daniel T. Elliott, Joe Joseph, Patrick Severts, and Dean Wood.

Likewise, we recognize our colleagues in Virginia Department of Historic Resources, as many revisions made in 2018-2019 were based on the 2009 Guidelines for Conducting Survey in Virginia. The 2019 revisions were made by Scott Butler, Bryan Tucker, Daniel T. Elliott, Scot Keith, and Teresa Ingalls, with input from the GCPA membership, and ratified on May 30, 2019.
Table of Contents

I. INTRODUCTION ... 1
 I.A. Definitions .. 1
 I.A.1. Area of Potential Effects ... 1
 I.A.2. Archaeological Site ... 1
 I.A.3. Archaeological Survey (Phase I) .. 2
 I.A.4. Evaluative Testing (Phase II) .. 2
 I.A.5. Data Recovery (Phase III) .. 2
 I.A.6. Isolated Find ... 2
 I.A.7. Reconnaissance Survey ... 2
 I.B. Federal Legislation .. 3
 I.C. State and Local Legislation ... 3

II. PERSONNEL QUALIFICATIONS .. 7
 II.A Federal Requirements ... 7
 II.B Principal Investigator ... 7
 II.C Project Archaeologist/Field Director ... 8
 II.D Other Investigative Personnel ... 8
 II.E Report Authors ... 8

III. STANDARDS FOR ARCHAEOLOGICAL INVESTIGATIONS ... 9
 III.A Preliminary Literature Review and Records Search .. 9
 III.A.1. Georgia Archaeological Site File .. 9
 III.A.2. Historic Preservation Division ... 10
 III.A.3. Georgia Department of Archives and History ... 10
 III.A.4. The Georgia Historical Society ... 10
 III.A.5. University of Georgia Libraries .. 11
 III.A.6. Other Resources .. 12
 III.B Archival Research for Testing (Phase II) and Data Recovery (Phase III) Projects 12
 III.C Field Methods for Archaeological Survey (Phase I) .. 13
 III.C.1 Survey Strategy for Indeterminate Probability Areas .. 13
 III.C.2 Survey Strategy for Low Probability Areas ... 14
 III.C.3 Survey Strategy for High Probability Areas .. 14
 III.C.4 Record Keeping ... 19
 III.C.5 Defining Sites During Survey .. 19
III.D Field Methods for Evaluative Testing (Phase II) and Data Recovery (Phase III) 21
 III.D.1 Approval and Guidance ... 21
 III.D.2 Field Methods ... 21
 III.D.3 Specialized Methods ... 22
 III.D.4 Record Keeping .. 22

IV. ARTIFACT PROCESSING, DATA ANALYSIS, AND CURATION 24
 IV.A Field Tracking ... 24
 IV.B Processing .. 24
 IV.C Analysis ... 24
 IV.D Curation .. 25
 IV.E Conservation ... 25
 IV.F No Collection and In-Field Analysis ... 25

V. REPORTING RESULTS ... 27
 V.A Report Content .. 27
 V.B No Finds Reporting ... 31

VI. BIBLIOGRAPHY .. 32
I. INTRODUCTION

This document presents the recommended minimum guidelines and standards for all archaeological investigations conducted in Georgia. These recommendations apply to projects in which practitioners are obligated to make a reasonable and good faith effort to identify, evaluate, and study archaeological sites. Although this document is designed to provide guidance for terrestrial archaeological investigations, it does not address the specific needs for submerged sites. For standards regarding underwater excavations contact the Office of the State Archaeologist.

The purpose of these guidelines is to encourage consistent, high-quality archaeological practice in the State of Georgia. They can be used by practitioners as a basis for developing project-specific research designs and by regulators as a means of evaluating work. The overriding goal is to protect the archaeological record by encouraging the use of rigorous, project-appropriate methods among all archaeological professionals.

For background on the development of survey standards and methods in Georgia, refer to Elliott (2000).

I.A. Definitions

The following definitions are provided to ensure a common understanding of the terms and concepts used in this document. Some of the definitions are taken directly from cultural resource legislation and regulations. Others have been agreed upon by the Georgia Council of Professional Archaeologists (GCPA).

I.A.1. Area of Potential Effects

The area of potential effects is defined as “the geographic area or areas within which an undertaking may directly or indirectly cause changes in the character or use of historic properties, if any such properties exist” (36 CFR Part 800.16[d]). Examples of effect can be direct, indirect, cumulative, visual, atmospheric, audible, or beneficial.

I.A.2. Archaeological Site

An archaeological site is a concentration of artifacts, ecofacts, or modifications to the landscape that are associated with past human activity and retain their context. An archaeological site must be at least 50 years old, and is characterized by any of the following criteria:

- A surface area yielding three or more artifacts from the same broad cultural period (i.e., historic or prehistoric) within a 30-m radius;
- Two or more shovel tests yielding a least one artifact each within 30 meters of each other;
- A shovel test that produces three or more artifacts from the same broad cultural period, as long as the artifacts cannot be fitted together (i.e., they are not two pieces of the same artifact);
• An area with visible or cultural features (e.g., shell midden, graves, rock shelters, petroglyphs, chimney fall, brick walls, rock piles, piers, whiskey stills, prospect pits, military earthworks, etc.);
• Abandoned graves or cemeteries should be recorded as archaeological sites;
• Single artifacts may receive a site designation if the researcher can justify its significance as culturally meaningful (e.g., a Paleo projectile point) and/or associated with specific surface or landscape features.

I.A.3. Archaeological Survey (Phase I)

Archaeological survey, often referred to as a Phase I or intensive survey, is a systematic, detailed examination of an area designed to gather information about archaeological sites. The goal of an archaeological survey is to identify archaeological sites within the area of potential effects. For surveys done for compliance with state or federal regulations, an additional goal of the survey is to evaluate those archaeological sites against the criteria for inclusion in the National Register of Historic Places (NRHP), in accordance with 36 CFR Part 60.

I.A.4. Evaluative Testing (Phase II)

Evaluation, or Phase II testing, is the process of determining whether identified properties meet defined criteria for inclusion on the NRHP, as set forth in 36 CFR Part 60.4. Phase II testing is warranted when a site has been identified that may be eligible for the NRHP, but not enough is yet known about it to make a recommendation about its eligibility.

I.A.5. Data Recovery (Phase III)

Data recovery, often referred to as Phase III, is a term used in a Cultural Resource Management context to describe excavation (usually partial) of a site to retrieve important data from the site before it is impacted or destroyed by an undertaking. When an agency’s proposed action will cause an adverse effect to a site included in or eligible for inclusion in the NRHP, the agency consults with the State Historic Preservation Officer (SHPO) to seek agreement, usually through a Memorandum of Agreement (MOA), on ways to avoid, minimize, or mitigate the adverse effect to the site. Data recovery is one possible alternative for such mitigation, although it is considered an adverse effect to the site, since excavation is a destructive activity.

I.A.6. Isolated Find

An isolated find is defined as no more than two historic or prehistoric artifacts found within a 30-meter radius. Isolated finds are not considered eligible for listing on the NRHP. For cases where an isolated find is unique, and potentially may be considered eligible for inclusion in the NRHP, it should be defined as a site (see I.A.2.). Deposits of cultural artifacts that have no integrity, such as road fill, stream gravels, or other situations where artifacts clearly are redeposited, should be considered isolated finds.

I.A.7. Reconnaissance Survey

A reconnaissance survey is defined as “an examination of all or part of an area accomplished in sufficient detail to make generalizations about the types and distributions of historic properties that
may be present” (Federal Register 48:44716). Both predictive models and “landform surveys” are considered as specific types of reconnaissance survey.

A reconnaissance survey is not a substitute for a Phase I archaeological survey. Unless otherwise agreed upon by the Georgia State Historic Preservation Office (GASHPO) and the project sponsor, reconnaissance level survey is not appropriate for projects submitted for review pursuant to Section 106 requirements. Reconnaissance surveys are most appropriately used for due diligence purposes. They are also useful when there are multiple alternatives for a project location, or when it is necessary to assess the archaeological potential of areas that will not be immediately affected or subject to Section 106 requirements (see discussion of Section 106 in Section I.B below).

The results of a reconnaissance survey can provide an estimate of the number and types of historic properties expected in a particular area. Reconnaissance findings also can guide management decisions based on an area’s sensitivity relative to historic preservation. Areas surveyed in this manner often require a more intensive, archaeological survey or evaluation if additional information is needed about specific properties (e.g., NRHP eligibility decisions) or when a project location is finalized.

I.B. Federal Legislation

Most archaeological surveys conducted in Georgia are done to comply with the National Historic Preservation Act (NHPA) of 1966, as amended. Section 106 of the NHPA requires federal agencies to review the effect their actions may have on archaeological sites and other historic properties that are listed in or eligible for the NRHP. Review procedures are referred to as “the Section 106 process” and are set forth in the regulations issued by the Advisory Council on Historic Preservation (36 CFR 800), as amended. This process is designed to identify historic properties, which are eligible or listed archaeological sites and historic resources that are eligible for listing on the NRHP, and to reduce the adverse effects of federal projects on those properties. Federal undertakings are any project, activity, or program either funded, permitted, licensed, or approved by any federal agency (e.g., a U.S. Army Corps of Engineers [USACE] permit under Section 404 of the Clean Water Act). Emphasis is placed on consultation with the SHPO and interested parties, including (but not limited to) Native American groups.

Archaeological surveys may be completed to comply with other federal laws or mandates, such as Section 110 of the NHPA or the National Environmental Policy Act of 1969. Regardless of the mandate, the standards and methods outlined in this document are applicable.

I.C. State and Local Legislation

Although Georgia currently has no single, overarching law to protect state or local cultural resources, there are several state laws that protect archaeological sites in particular situations, as outlined in the Official Code of Georgia (OCGA). Please refer to the OCGA for specifics regarding each. The guidelines presented in this document are also designed to satisfy the requirements for archaeological investigations when required under state and local laws.

For non-federal projects, notifying the State Archaeologist is required by law (OCGA 12-3-621) when the surface of any archaeological site is disturbed for the purpose of investigating the site or
discovering artifacts. This code section was amended as of July 1, 2007 to provide for notification to be given through a website and/or a telephone hot line that will be available at all times. The Office of the State Archaeologist (OSA)/Georgia State Historic Preservation Office (GASHPO) is in the Georgia Historic Preservation Division (GHPD) of the Department of Natural Resources (DNR) and will receive notification about impacting archaeological sites through this website or by phone. At a minimum, notification should include the following:

- Your name and contact information.
- The county in which you will be digging and other information as to the specific tract of land or location.
- The date(s) on which you expect to be there.

In Georgia, city and county governments are responsible for enforcing state laws and local regulations regarding abandoned cemeteries and burial grounds. The primary role of the GASHPO is to offer information and make suggestions about whom to contact to see that cemeteries are protected. If a cemetery could be present, the local government office that has control over the development should be contacted first, such as the development permitting office, board of planning and zoning, the code enforcement office, the county commission or city council, and/or the city or county attorney. Georgia laws favor leaving burials in place, although provisions in the OCGA stipulate the treatment of human remains and burial objects.

- **Protection of Archeological, Aboriginal, Prehistoric, and Historic Sites (2007); 12-3-621**
 Stipulates prohibited acts as to archeological, aboriginal, prehistoric, or historic sites; the need to notify the State Archaeologist before beginning investigation; and outlines the penalties resulting from site disturbance.

- **Office of the State Archaeologist (1969); 12-3-53**
 Establishes the duties of the State Archaeologist to carry out state-mandated archaeology programs.

- **State Archaeologist's Duties (2001); 12-3-621**
 Strengthens state laws for the protection of archaeological sites by clarifying law enforcement provisions and confirming private property owners rights.

- **State Antiquities Act (1969); 12-3-52**
 Provides for the protection of archaeological sites on state-owned lands, except for the Board of Regents; authorizes permits to be issued for approved archaeological investigations.

- **Submerged Cultural Resources (1985); 12-3-80 et seq.**
 Defines submerged cultural resources; establishes state ownership and agency responsibilities; provides for permits for survey and research.

- **Cave Protection, Archaeological Sites (1977); 12-4-140 et seq.**
 Prohibits damage to archaeological sites within caves.

- **Georgia Planning Act (1989); 45-12-200; 50-8-2; 12-2-1; 36-70**
 Requires local governments to prepare comprehensive plans. Historic resources must be addressed.
• **Georgia Environmental Policy Act (1991); 12-16-1 et seq.**
 Requires state agencies to prepare environmental assessments on actions that impact the environment, including historic properties.

• **Georgia Mountains and River Corridor Protection Act (1991); 12-2-1**
 Requires minimum standards to be established for land use development on mountain ridges and along river corridors, including the protection of historic properties, through coordinated planning procedures.

• **Georgia Surface Mining Act (1969, 1992); 12-4-70 et seq.**
 Requires that mining land use plans address properties listed in the National Register.

• **Abandoned Cemeteries and Burial Grounds (1991); 36-72-1 et seq.**
 Strengthens cemetery protection laws by authorizing local governments to preserve and protect abandoned cemeteries, and to issue permits prior to any disturbance of burials. Abandoned cemeteries encountered during archaeological investigations should be defined and recorded as archaeological sites.

 A developer or landowner must get a permit from the local governing authority if the use of cemetery land is to be changed for purposes of development. Extensive permit requirements are stipulated, among which include hiring an archaeologist to delineate graves and cemetery boundary, a land surveyor to map the cemetery, and a genealogist to prepare a plan for contacting descendants before any disinterment occurs. If permitted, an archaeologist must carry out any exhumation of human remains.

• **Grave Protection and Repatriation (1992); 44-12-260/264; 12-3-620 et seq.; 31-21-6; 31-21-44 et seq.**
 Establishes policies for burials, skeletal material, and funerary objects regarding archaeological research, public display, buying/selling artifacts, and repatriation.

• **Council on American Indian Concerns (1992, 2002); 44-12-280 et seq.**
 Creates a Council on American Indian Concerns to advise on Native American issues.

Encountering American Indian Human Remains

On May 15, 2018, the GASHPO/Office of the State Archaeologist (OSA) prepared guidance to inform archaeologists of a change in policy related to Native American burials in Georgia (repeated here).

In the future, once a Native American burial has been excavated from non-Federal land, the GASHPO/OSA will conduct Native American Graves Protection and Repatriation Act (NAGPRA) consultations to determine the disposition of the remains. The exhumation or excavation of Native American human remains are covered by OCGA section 31-21-6 (a), which states:

31-21-6. Notification of law enforcement agency upon disturbance, distraction or debasement of human remains.

(a) Any person who knows or has reason to believe that interred human remains have been or are being disturbed, destroyed, defaced, mutilated, removed, or exposed without a permit issued pursuant to Code Section 36-72-4, 12-3-52, or 12-3-82 or without written permission of the landowner for an archeological excavation on the site by an archeologist or not in compliance with Section 106 of the
National Historic Preservation Act, as amended, and any person who accidentally or inadvertently discovers or exposes human remains shall immediately notify the local law enforcement agency with jurisdiction in the area where the human remains are located.

According to this code section, a professional archaeologist who has the written permission of the landowner and has notified the Georgia DNR for a non-compliance archaeological project (such as a field school) or who is working in compliance with Section 106 does not need to notify local law enforcement of the discovery of human remains. The law was intended to avoid interrupting archaeological excavations by requiring local law enforcement and subsequent parties as spelled out in OCGA 31-21-6 (b) to be notified. Also, notifying local parties could endanger the remains if the site location becomes public knowledge. Although not specified in Georgia code, it is the policy of the GASHPO/OSA that the project archaeologist halt all excavation in the immediate area and notify the State Archaeologist’s office as soon as human remains and/or burial items are discovered. The point of contact is;

State Archaeologist Bryan Tucker Bryan.Tucker@dnr.ga.gov (770-389-7863 or 404-295-1090), or
Deputy State Archaeologist Rachel Black Rachel.Black@dnr.ga.gov (404-823-3531).

The GASHPO/OSA will coordinate with the archaeologists and the landowner to determine if the remains can be left in situ and if the remains are likely those of a Native American. If the remains are believed to be Native American and are excavated, then the GASHPO/OSA will initiate NAGPRA consultations to determine the disposition of the remains. If the remains are not Native American then the GASHPO/OSA will consult with the landowner and other stakeholders to determine the disposition of the human remains. Human remains that are inadvertently encountered by an archaeologist outside of an archaeological excavation (for example, remains observed eroding out of a creek or road bank) should be reported to local law enforcement pursuant to OCGA 31-21-6(a).

If human remains are found in the course of archaeological investigation on non-Federal land:

1. Halt all work;
2. Do not notify local law enforcement;
3. Notify the Office of the State Archaeologist Bryan.Tucker@dnr.ga.gov (770-389-7863 or 404-295-1090) or Rachel.black@dnr.ga.gov (404-823-3531);
4. If the remains cannot be left in place, GASHPO/OSA will take possession of the remains and conduct NAGPRA consultations.
II. PERSONNEL QUALIFICATIONS

Archaeological projects require the services or input of professionals in archaeology and other related disciplines. It is essential that archaeological surveys and evaluations be performed and supervised by qualified professional personnel.

II.A Federal Requirements

Agencies, institutions, corporations, associations, or individuals will be considered “qualified” when they meet the Secretary of the Interior’s Professional Qualifications Standards (36 CFR 61 and Federal Register 48:44739).

The minimum professional qualifications for an archaeologist are a graduate degree in archaeology, anthropology, or closely related field, plus:

- At least one (1) year of full-time professional experience or equivalent specialized training in archaeological research, administration, or management;
- At least four (4) months of supervised field and analytic experience in general North American archaeology; and
- Demonstrated ability to carry research to completion.

II.B Principal Investigator

The Principal Investigator (PI) is the individual responsible for planning and investigating cultural resources and for ensuring the validity of the material presented in cultural resource reports. All archaeological investigations must be carried out under the direction of the PI, who minimally will meet the qualifications as an Archaeologist outlined by the Secretary of the Interior (above) and:

- Have at least one (1) year of full-time supervisory experience in the study of related resources (e.g., historic archaeology, prehistoric archaeology or underwater archaeology);
- Have at least six (6) months hands-on field experience and training with specialized methods (e.g, metal detecting, ground penetrating radar (GPR), magnetometry, electrical resistivity, and electromagnetic conductivity (EM), etc.) when those applications are the primary factors of a specialized archaeological investigation;
- Have at least six (6) months of archaeological experience in Georgia and/or the southeastern United States;
- Be certified by the Register of Professional Archaeologists (RPA).
II.C Project Archaeologist/Field Director

If the PI is not directing the project in the field, fieldwork should be supervised on the ground by a Project Archaeologist/Field Director who meets the following minimal qualifications:

- Graduate training in archaeology (or at least three-year professional archaeological experience);
- At least one (1) year of full-time archaeological experience/training in the Southeast;
- Proven ability to complete satisfactory archaeological field work.

II.D Other Investigative Personnel

The skills of all other investigative personnel must be appropriate to the requested task(s), the nature of the project, and to the goals and specifications delineated in the research design. Faunal, floral, geomorphological, mineralogical, and other specialized analyses should be conducted by personnel with the relevant training and experience.

II.E Report Authors

Among the report author(s) should be the individual(s) who supervised the bulk of the field work, whether they be Principal Investigators or Project Archaeologists/Field Directors. The report author should be familiar with the area investigated and identified cultural resources.
III. STANDARDS FOR ARCHAEOLOGICAL INVESTIGATIONS

The following guidelines describe suggested methods, staffing, and minimum levels of effort for various aspects of archaeological investigations in Georgia. They are based on a working knowledge of Georgia’s archaeological resources and environments. These guidelines are specifically useful to field archaeologists, agency personnel, and the contracting agent (as appropriate). They can be used as a measure to ensure compliance with federal and state regulations, comparability of research results, and evaluation of research designs and project reports.

III.A Preliminary Literature Review and Records Search

All archaeological studies (whether reconnaissance, Phase I archaeological survey, Phase II testing, or Phase III data recovery) should be preceded by a literature review and records search. This search will include a review of the Georgia Archaeological Site File (GASF) to identify previously recorded sites and previous archaeological investigations in and within one km (0.62 mile) of the project area. The review should include relevant sources to provide the prehistoric and historic context for the study and should be conducted prior to any fieldwork. Researchers should examine pertinent holdings at some or all the following institutions:

III.A.1. Georgia Archaeological Site File

The GASF is the official repository for information about known archaeological sites of all periods in the state of Georgia. The GASF is housed at the University of Georgia (UGA) in Athens. Site locations are recorded on hardcopy U.S. Geological Survey (USGS) 7.5-minute quadrangle maps, which cover all areas of the state. Other hardcopy information is available in reports, original notes and records, photographs, and other files. Georgia Civil War battlefield boundaries, previously identified by the National Park Service (NPS) Civil War Sites Advisory Commission (CWSAC), are available on separate hardcopy USGS quadrangle maps at the GASF (CWSAC 1992). Contact GASF for current pricing to access the site files.

The Georgia Archaeological Site File
UGA Laboratory of Archaeology
1125 East Whitehall Road
Athens, GA 30602-4702
phone: (706) 542-8737
fax: (706) 542-8920
gasf@uga.edu

This information is also recorded in Georgia's Natural, Archaeological, and Historic Resources Geographical Information System (GNAHRGIS) available online. Qualified archaeologists can make appointments to conduct research in person, or request access to site files available online via GNAHRGIS.
GNAHRGIS is an interactive web-based registry and geographical information system designed to catalog information about the natural, archaeological, and historic resources of Georgia. In the GNAHRGIS system, archaeological resources are defined as archaeological sites recorded in the GASF. For registered users, scanned archeological site forms, areas previously surveyed for archaeological resources, and associated digitized archaeological reports are available for download on GNAHRGIS. It is important to note that shape files depicting site boundaries should be compared with site forms or hardcopy USGS quadrangle maps as discrepancies are sometimes identified. Please notify GASF when any discrepancies arise.

General (public) users have "read-only" access to all unrestricted historic surveys including data about surveyed historic properties and their mapped locations. General users also have database and GIS query capabilities for unrestricted surveys. General users cannot create new surveys, nor can they add or edit survey data.

Registered users have "read-only" access to all restricted surveys including data about surveyed archaeological sites and historic properties, their mapped locations, previously surveyed areas, and associated archaeological reports. Registered users also have database and GIS query capabilities for unrestricted surveys. Access to restricted surveys is limited to the agencies which created them and GASF staff who manage GNAHRGIS.

III.A.2. Historic Preservation Division

The Georgia State Historic Preservation Office (GASHPO), also known as the Georgia Historic Preservation Division (GHPD), Georgia Department of Natural Resources, maintains a library of Section 106 environmental review documents and National Register of Historic Places (NRHP) files on identified sites and listed properties on the NRHP. Although NRHP listings are available in published and electronic form, these lists only include those sites already listed and not properties determined eligible or listings that may be pending.

Jewett Center for Historic Preservation
2610 GA Hwy 155, SW
Strockbridge, GA 302810
phone: 770 389 7844
fax: 770 389 7878
www.gashpo.org

III.A.3. Georgia Department of Archives and History

The Georgia Department of Archives and History and the Surveyor General’s Office in Clayton County contain a wealth of historical information about the state. These sources include original deeds, plats, photographs, and maps, and copies of courthouse records from every county in Georgia. Robert S. Davis, Jr. (1991) and George K. Schweitzer (1995) have published useful guides for conducting historical research in Georgia, which details records that survived for each county.

III.A.4. The Georgia Historical Society

The Georgia Historical Society (GHS) Research Center Located in historic Hodgson Hall in Savannah, preserves an unparalleled collection of Georgia history, including more than 4 million manuscripts, 100,000 photographs, 30,000 architectural drawings, 15,000 rare and non-rare books,
and thousands of maps, portraits, and artifacts. The manuscript collection includes family papers, military records of every Georgia war, papers of Georgia’s major political leaders, colonial account books, diaries, plantation records, papers of social and cultural organizations, and business records ranging from the eighteenth through the twentieth century.

The GHS has administered Georgia’s statewide marker program since 1998, when they assumed responsibility from the Georgia Department of Natural Resources (DNR). Since then they have erected over 200 new historical markers across Georgia. Information for those markers and over 2000 others are available through their online searchable database.

http://georgiahistory.com/education-outreach/historical-markers/marker-index/

Many of these historical markers represent significant locations and events in Georgia history not defined as archaeological sites. Roadside historical markers capture Georgia history in a format readily understood by travelers and residents alike. These easily identifiable markers give readers a unique insight into the stories of our shared past. Archaeologists should include information for historical markers in their records search when located within one km of their study area. Many Georgia historic markers are now over 50 years old and are themselves potentially significant historic objects, worthy of consideration under NRHP criteria.

III.A.5. University of Georgia Libraries

The libraries in the university system of Georgia house a variety of documents that are useful in locating archaeological sites.

The Map and Government Information Library maintains the largest collection of aerial photography of the State of Georgia outside of the National Archives. The paper collection consists of over 230,000 photos from the late 1930s through the mid-1990s. The aerial photographs in the Map and Government Information Library were produced by a variety of state and federal agencies, including the U.S. Department of Agriculture (USDA) and the USGS, as well as for projects completed by academics and private companies. These photographs are a ready source of information on early twentieth century house and farmstead locations, and for studies on previous land use (areas in cultivation, timber, road routes). The same Library contains early soil survey maps, obsolete county road maps, and early topographic maps that often show the location of buildings, houses, and other structures.

http://hmap.libs.uga.edu/hmap/search

Researchers studying Georgia urban areas should consult the available Sanborn Fire Insurance Maps, also available at the Map and Government Information Library at UGA.

http://www.libs.uga.edu/magil/collections/sanborn.html

Other early Georgia maps are contained in the Hargrett Rare Book and Manuscript Collection at the University of Georgia Libraries Russell Special Collections Building in Athens. The Hargrett Library focuses on Georgia history and culture, holding rare books and Georgiana, historical manuscripts, photographs, maps, broadsides, and UGA archives and records. Other areas of emphasis include performing arts and natural history. Many rare maps are also available online.

http://www.libs.uga.edu/hargrett/
III.A.6. Other Resources

Other institutions or resources that can be consulted include:

- Regional Commissions (Historic Preservation)
- County historical societies, local historians, local museums, and local libraries
- County courthouses and agencies
- Archives and museums in other states
- Federal Archives (Southeastern Archaeological Center, Tallahassee)
- National Archives, Southeast Regional Center, Morrow, Georgia
- Smithsonian Institution, Washington D.C. and College Park, Maryland

III.B Archival Research for Testing (Phase II) and Data Recovery (Phase III) Projects

In addition to the literature search and archival research necessary for all archaeological investigations, additional historical information may be required for site evaluation testing (Phase II) and data recovery (Phase III) projects.

Phase II testing of historic sites should include a title search. For Phase III data recovery of historic sites, additional historical research may include:

- Census data, such as agricultural, population, and industrial censuses
- Slave schedules
- Family papers, wills, probate inventories, daybooks, etc.
- Informant interviews (particularly for twentieth century sites)
- Tax Records
III.C Field Methods for Archaeological Survey (Phase I)

When planning for archaeological investigations prior to fieldwork, spatial data for previously recorded sites and cemeteries (obtainable from GNAHRGIS and/or the GASF in Athens) should be mapped in GIS. For larger projects, it is recommended that aerial and topographic imagery and data regarding soil types, drainages, slope and elevation, and georeferenced historic maps and aerial photographs be added in GIS to better model and predict archaeological site locations.

When available, Light Detecting and Ranging (LiDAR) maps may be examined prior to fieldwork to allow field investigators the opportunity to examine and assess surface archaeological features. Examining these high-resolution elevational data is useful for identifying roads, agricultural terraces, earthworks, ditches, canals, mounds, caves, quarries, rockpiles, and other landscape elements often not easily discernible on the ground.

Archaeologists should not omit parcels from an archaeological survey simply because they have been classified as “poorly drained” by the USDA Soil Conservation Service, and areas should not be automatically excluded because of plowing or forestry activities. Similarly, areas depicted as wetlands or slopes on USGS maps should be examined on the ground to determine their suitability for survey.

A preliminary inspection of the project area and review of maps and documentary records may allow investigators to stratify the project area into three general categories: Indeterminate Probability, Low Probability, and High Probability.

For all categories, all land within the project boundaries requires inspection. Global Positioning Systems (GPS) receivers should be used to record survey areas and site locations. At a minimum, all archaeological sites and isolates should be recorded with a sub-meter accurate GPS receiver. A site’s datum and boundaries should be recorded. At the completion of the survey, site centroids and boundaries should be imported into GIS. When features are found at the survey level, sampling may be necessary to determine feature age and potential function, but features should not be fully excavated in order to preserve their research potential.

III.C.1 Survey Strategy for Indeterminate Probability Areas

Indeterminate Probability areas are permanently or seasonally inundated; dredge spoil disposal areas; tidal areas; and active floodplains (or other active depositional environments) where deposits are so deep that finding sites using conventional methods is unlikely.

An alternative method of fieldwork may be necessary in areas of indeterminate probability (e.g., deep testing with a backhoe or auger). Such work should, whenever possible, rely on guidance from a professional geomorphologist who can assess the potential for deeply buried cultural deposits within a given tract. Because it is difficult to apply standard archaeological survey methods to an entire tract with the potential for deeply buried sites, alternative methods in such areas may be necessary during the undertaking to ensure that no sites are destroyed. Construction monitoring is generally not considered an acceptable survey method, though it can be useful to ensure deeply buried deposits/features are not inadvertently impacted. Proposed alternative fieldwork methods for indeterminate areas should be reviewed by relevant federal agencies and GASHPO staff prior to fieldwork initiation.
III.C.2 Survey Strategy for Low Probability Areas

Low Probability areas have slopes greater than 10 percent; areas of very poorly drained soil (as determined by subsurface inspection); and areas that have been previously disturbed to such a degree that archaeological materials, if present, are no longer in context. Documentation of disturbance can include recent aerial photographs, ground views, or maps showing the disturbance (e.g., recent construction). However, surveyors should be aware of small landforms with high site potential that may be within areas that otherwise are characterized by 10 percent or greater slope. Likewise, rock shelters and battlefields are often in these areas.

Field investigation of low probability areas should include a surface inspection of all areas where the slope is greater than 10 percent to identify potential sites such as rock shelters, caves, military earthworks, mines, quarries, whiskey distilleries, and/or petroglyphs. In disturbed areas or in very poorly drained areas or hydric soils, subsurface inspection (i.e., shovel testing, coring, or augering) should be used to verify soil conditions at intervals no greater than 90 meters. In hydric areas of direct subsurface impact, subsurface inspection using coring or augering techniques may be particularly important. Representative subsurface tests should be deep enough to confirm actual sterile soils instead of a sterile soil lens.

III.C.3 Survey Strategy for High Probability Areas

High Probability areas do not meet the other criteria outlined above. Generally, survey of high probability areas should follow these guidelines:

III.C.3.a Pedestrian Surface Survey

A pedestrian surface survey is the visual inspection of the ground surface for isolated finds and sites. In general, a surface survey should be systematic and undertaken by walking regularly spaced parallel transects which cover the project area. The maximum interval between survey transects should not normally exceed 30 meters. Low-lying areas that are rain flooded and inaccessible during fieldwork, but are normally dry, may need to be subsequently reexamined by pedestrian survey to determine the presence/absence of archaeological sites. When surface survey locates a site, close interval subsurface shovel testing is necessary to determine the site’s stratigraphy, assess artifact density, and help to determine boundaries as follows:

- Surface survey may be used in conjunction with shovel tests in areas where surface visibility exceeds 25 percent. Areas with less than 25 percent surface visibility need subsurface investigation. Highly eroded areas, where subsoil is visible at or just below the surface, and recently plowed fields are the most common instances where such high visibility exists. The archaeologist’s judgment concerning visibility is especially critical in fallow or dry fields, where standard interval (30 m) subsurface testing is required.

- If an area has greater than 25 percent surface visibility, but is in a dynamic depositional environment (e.g., the foot of a slope or adjacent to an aggrading waterway), then 30-meter interval subsurface testing is recommended.
III.C.3.b Subsurface Survey

In most instances some type of subsurface investigation will be necessary to discover archaeological sites. Survey methods will depend on field conditions and the types of anticipated sites. Under most conditions, 30-meter interval shovel testing is the preferred method. However, rigid adherence to systematic sampling at fixed intervals may fail to yield optimal survey results, since fixed intervals may not uncover sites that would have been located using a judgmental technique. Thus, a combination of methods – systematic and intuitive shovel testing along with careful scrutiny for surface artifact scatters and surface features, is probably the most efficient method for site discovery.

- **Shovel tests** will be 30 × 30 centimeters (cm) or larger and placed at intervals no greater than 30 meters. All fill should be screened through quarter-inch screen. Tests are to be excavated to at least 80 cm below surface (cmbs), or until impenetrable substrate (i.e., bedrock or clay), a known sterile subsoil, or the water table is reached.

- **Mechanical augers**, while not generally recommended, can be used in areas that have impregnable ground cover (e.g., urban areas with concrete, brick rubble, etc.). They are to be placed at intervals not greater than 30 meters. Fill should be screened. Auger tests should be documented in the same manner as shovel tests.

- **Mechanical deep testing** (e.g., backhoe trenches or coring) may be necessary in active depositional environments or in certain urban settings where the ground surface is otherwise inaccessible. All deep testing should comply with Occupational Safety and Health Administration (OSHA) *Standards for Excavation Safety* (29 CFR 1926 Subpart P and appendices).

III.C.3.c Specialized Surveys

In some circumstances, standard archaeological survey methods (e.g., pedestrian surface survey and shovel testing) may not be effective. In situations described below, research designs and proposed methodologies are to be discussed in advance with GASHPO staff:

III.C.3.c.i Military Sites

Conventional shovel testing has been proven not effective in identifying military battlefields and encampments (Grier and Potter 2000). Battlefields may contain unmarked burials and should be considered as sensitive resources. A thorough visual observation of the ground surface is necessary to identify and document surface features (e.g., trenches, skirmish pits, field batteries) and/or evidence of previous relic hunting. Areas of steep slopes (>10%), sometimes excluded from standard survey areas, should be carefully examined, as slopes were often key defensive terrain (e.g., rifle pits, trenches). Avocationalists familiar with the study area should be interviewed, whether or not they participate in fieldwork.

At the survey level, metal detecting should be used to identify metal artifact scatters within known military battlefields and/or encampments. Coverage should be systematic, along 1.5-meter wide lanes spaced at no more than 30-meter intervals. It may be necessary to remove ground vegetation and/or leaf litter along detection lanes for metal detecting to be effective.
A system of interpreting battlefield landscapes known as the KOCOA system has been adopted by the NPS and endorsed by the American Battlefield Protection Program for the evaluation of historic battlefields (Lowe 2000). It encompasses key landscape features that may have affected the military action at a given location, and keeps the evaluator from focusing solely upon archaeological artifacts or surface features such as earthworks:

K: Key terrain (terrain that must be taken or held to obtain victory),

O: Observation and fields of fire (terrain that permits observation of enemy movements and avenues of approach),

C: Cover/concealment (terrain that provides troops with cover or protection from enemy fire),

O: Obstacles (features that stand in the way of seizing key terrain – these can be natural, such as heavy woods or deep swamp, or man-made such as fencelines, ditches, or earthworks),

A: Avenues of approach (terrain by which the enemy may be approached – this can be anything from an established roadway to an open field).

The KOCOA approach should be used by archaeologists when defining military battlefields, while keeping in mind that battlefield landscapes are historic properties distinct from (but often containing) archaeological sites.

III.C.3.c.ii Deep Sediments

If colluvial, alluvial, or aeolian deposits are known to be present in the survey area from background research or field inspection, deep survey methods are needed to identify buried sites or potential for such sites. Subsurface investigations could include geophysical methods such as coring, hand excavation of deep shovel tests or 1 x 1 meter units, power augering, or mechanical trenching. The choice of technique will depend on the depth of deposits. A geomorphologist should be employed to develop a sampling program that identifies soils suitable for the preservation or formation of cultural deposits.

Deep investigations with heavy machinery are destructive, and care should be taken to avoid excessive damage to archaeological sites. Trenching with heavy equipment such as a backhoe (preferably toothless) is to be used in situations where deep sediments cannot be reached through hand excavation. Trenches should be placed in a manner suitable to reconstruct the depositional history of the floodplain. In special circumstances where the terrain limits access of heavy equipment and hand excavation is not feasible, coring or augering may be implemented. Soils from the cores are to be extracted in a controlled manner and sifted when appropriate.

After excavation, the trench profile will be troweled to inspect for stratigraphy and cultural features, if troweling can be completed safely. All deep testing should comply with OSHA Standards for Excavation Safety (29 CFR 1926 Subpart P and appendices). A detailed profile drawing and description shall be completed. If a geomorphologist is used, he or she is to assist in the placement of trenches, evaluation, and interpretation of excavation profiles. The evaluation may include tests for soil type and texture, standardized color descriptions, and grain size distributions. The geomorphologist will submit a detailed interpretive analysis that will be included as an appendix to the full technical report of investigations. This analysis will address the issues of site depositional
processes, their effects on archaeological preservation, visibility of archaeological sites, and landform evolution over time. A summary and discussion of the results should be presented in the body of the technical report.

III.C.3.c.iii Urban Locations

Urban locations have a high potential to contain historic archaeological sites and may also contain prehistoric remains. Mid- and rear domestic spaces should be targeted for features such as privies, cisterns, wells, trashpits, and cellars. Phase I field survey techniques often need greater effort in urban locations. Rather than shovel tests, urban areas may require extensive background research followed by remote sensing and/or excavation of test units to evaluate site stratigraphy and the presence/absence of cultural features. Prior to hand excavation, it may be necessary to use heavy machinery to remove overlying rubble, modern fill, or sterile overburden.

It should be recognized that many urban locations will contain archaeological sites and deposits that were originally dumped as garbage fill, which may have archaeological significance on their own. It is also important to recognize that deeply buried prehistoric sites often exist in historically occupied locations.

III.C.3.c.iv Metal Detecting

Metal detecting is usually necessary to identify artifact scatters at military battlefields and encampments, and for delineating historic sites. Conventional methods (e.g., shovel testing) have proven to be unsuccessful at effectively identifying military sites (Geier and Potter 2000).

Metal detection is required during archaeological investigations under the following conditions:

- Phase I (and all phases) when working in previously identified battlefields, and/or known military encampments;
- Phase II during delineation/evaluation of historic sites;
- Historic grave removals;
- Research designs and proposed methodologies for metal detecting should be discussed in advance with GASHPO staff, and/or relevant Federal agencies;
- Avocationalists should be interviewed regarding their knowledge of the area;

Coverage:

- When required during Phase I, metal detector coverage should be systematic along 1.5 meter lanes on transects at a maximum 30 meter interval, though closer or even overlapping coverage may be necessary to meet specific research objectives;
- When required during Phase II, metal detector coverage should be along 1.5 meter lanes on transects at maximum a 10 meter interval;
- Removal of ground vegetation and/or leaf litter along detection lanes may be needed for metal detecting to be effective.
- At military sites, it is not always necessary (or desirable) to collect every metal artifact older than 50 years – especially if the site identification effort is research focused.
Reporting:

- Equipment, personnel, and time spent should be clearly stated in the methods section;
- Coverage, mapping, and artifact collection strategies should likewise be clearly stated and justified.

Detecting Equipment

- No equipment requirements based on costs, though it's suggested that devices be recent models and professional grade, as technology is always improving;

Personnel Experience

- Although recommended, no specific metal detecting training course is required;
- For Principal Investigators/Field Directors: have at least 100 hours hands-on field experience and/or equivalent training with remote sensing applications, when those applications are the primary focus of the archaeological investigation;
- Other investigative personnel: the skills of all other investigative personnel must be appropriate to the requested task(s), the nature of the project, and to the goals and specifications delineated in the research design.

III.C.3.c.v Other Remote Sensing

Other geophysical methods such as ground penetrating radar (GPR), magnetometry, electrical resistivity, and electromagnetic conductivity (EM) all have specific applications and may be useful or necessary for identification of subsurface features such as grave shafts, buried foundation walls, storage pits, hearths, and underwater sites. GPR in particular is also a technique for surveying urban locations where paved or impermeable surfaces may prevent the use of standard field methods. In situations where geophysical survey is used, subsurface ground-truth testing using hand excavation, core augering, or heavy machinery scraping, is recommended to verify the presence and type of archaeological deposits.

A professional archaeologist with training in geophysical methods should conduct a survey using any of the geophysical methods listed above in a cemetery or archaeological site. Experience using these methods to map utilities or study deeper geologic deposits, is not applicable for identifying and interpreting more ephemeral cultural features including graves. While the operation of geophysical equipment is mostly standard across disciplines, processing, interpretation, ground-truthing, and reporting of the data varies based on training and experience. Considerable expertise is necessary to effectively design, conduct, and interpret geophysical surveys of cemeteries and archaeological sites. Reporting should include which post-processing software was used and relevant data (e.g., depth, slices).

When remote sensing is the primary survey method, a research design should be reviewed and approved by relevant federal agencies and the GASHPO, prior to undertaking fieldwork.
III.C.4 Record Keeping

The Principal Investigator or Project Archaeologist is responsible for maintaining daily notes and survey data.

- Each shovel test or test unit location should be recorded, noting its location, depth, soil profile, artifact yield, general conditions, and other pertinent information. For sterile shovel tests not within site boundaries, information on location and depth are required. Notes should be taken for representative soil profiles within individual soil units within the project area. This should be one shovel test showing the general range of typical conditions and depths of each soil type for the area.

- Each shovel test should be given a unique field designation, and materials recovered from it are to be analyzed and cataloged by discrete provenience.

- Site boundaries are to be accurately located on USGS 7.5-minute topographic quadrangles and a site sketch map. Areas where the site boundary is undetermined should be depicted on maps with a dotted or dashed line, and definitive boundaries should be depicted with a solid line.

If possible, the boundaries (perimeter) and center of all sites and undocumented cemeteries (i.e., those not located on USGS topographic maps) should be recorded using a GPS receiver capable of submeter or better accuracy. For sites less than one-fourth acre (1,000 m²) in size, a single set of coordinates taken at the site’s center will suffice. Site sketch maps should be drawn using a scale and an arrow showing true or magnetic north (as well as grid north if that is used) and should depict the location of all positive and negative shovel tests located within the site, as well as the site boundary. It is recommended that landmarks useful for relocating a site be mapped, such as large trees, road right-of-way markers, roads and road intersections, buildings, creeks, ponds/wetlands, telephone poles, etc. Features on the surface should be mapped, such as structural foundations, wells, terracing, fence lines, and historic vegetation (such as large shade trees). Any archaeological excavations, no matter what type (metal detection, augering, test unit) should be mapped.

Photographs are to be taken of representative project environments and areas where different survey strategies were used. Photographs also should be taken of all sites identified during the survey. Digital photographs should be used for visual documentation. A minimum 300 dpi quality (when printed at 5 x 7-inch size) and .TIFF file format is in keeping with most curation repositories.

III.C.5 Defining Sites During Survey

When defining a site, investigations should address physical integrity, horizontal and vertical boundaries, and the quantity and type of cultural materials present.
III.C.5.a Establishing Boundaries

Systematic subsurface testing, alone or in combination with surface inspection, is necessary to establish both the horizontal and vertical extent of a site. All discovered sites, structural remains, and cultural features will be recorded as to width, length, depth, and nature of fill within the site area.

Site boundaries are to be established by excavating radial shovel tests in no less than four directions. Thirty-meter interval shovel tests can be used to establish the general boundaries, with two consecutive negative shovel tests establishing the edge of the site. Thus, the interval between two distinct sites will usually be at least 60 meters, unless other physical boundaries are apparent. A 10 or 15-meter testing interval is recommended at the outer limits of sites to establish more accurate boundaries. Site boundaries are established when at least two consecutive negative shovel tests are excavated using 10 or 15 meter intervals.

Minimal “cruciform” shovel testing is not sufficient to delineate site boundaries. Ideally, the investigation will clearly delineate site boundaries with close 10- or 15-meter interval shovel tests, depending on topography. Each outside positive shovel test will be delineated when two consecutive negative shovel tests are recorded beyond each outermost positive shovel test within the limits of the site or isolated find.

III.C.5.b Materials Present

The primary goal of recovering artifacts during an archaeological survey is to collect information about the spatial extent of the site, the period during which it was occupied, and what types of activities were carried out there. This goal should guide the sampling and collection strategy employed, regardless of the specific methods used to explore a site.

At the survey level, a complete surface artifact collection should not normally be made unless the site contains few artifacts or is subject to active looting or vandalism. If a surface collection is made, an appropriate sampling method should be based on the investigator’s assessment of field conditions as well as the type and density of visible artifacts. An investigator’s collection strategy should be specified in field notes, for example all diagnostics and a representative sample of other materials, or measured dog-leash samples of every surface artifact in designated locations, or a minimum number of each type of historic ceramic and glass plus other diagnostic items.

At military sites, it is not always necessary (or desirable) to collect every metal artifact older than 50 years – especially if the site identification effort is research focused. However, the artifact collection strategy should be clearly described and justified.
III.D Field Methods for Evaluative Testing (Phase II) and Data Recovery (Phase III)

Sometimes it is difficult to make definitive site eligibility assessments using standard archaeological survey methods. In this case, sites are considered “potentially eligible” or “unassessed” or “unknown” for inclusion in the NRHP, and additional Phase II site testing is usually necessary. Site testing strategies should be designed to provide not only information about site eligibility, but also information that will help in mitigation planning (if ultimately necessary). However, site testing methods should be designed to minimize site destruction.

III.D.1 Approval and Guidance

Before data recovery is carried out, a data recovery plan must be developed and approved by the agency, the GASHPO, or involved parties. For further guidance in developing a data recovery plan, see Treatment of Archaeological Properties: A Handbook (Advisory Council on Historic Preservation 1980) and Consulting About Archaeology Under Section 106 (Advisory Council on Historic Preservation 1990). See also the Advisory Council on Historic Preservation’s “Recommended Approach for Consultation on Recovery of Significant Information from Archaeological Sites,” in the Federal Register (65(95):27085–27087), which contains a model Memorandum of Agreement (MOA).

III.D.2 Field Methods

- **Controlled Surface Collection:** Where possible, a controlled surface collection can provide valuable information to guide subsurface testing. If a complete collection of surface artifacts is impractical or inappropriate, a systematic sampling scheme should be considered. Any such collections are to be provenienced according to some type of coordinate system.

- **Heavy Machinery:** Site areas should not be stripped before a controlled surface collection is made and/or shovel tests and test units are excavated. A smooth bladed bucket should always be used when stripping plow zone to search for features. Heavy machinery should not be used to remove sub-plow zone cultural deposits. However, the use of heavy machinery for limited stripping of surface deposits is encouraged, since this can often indicate whether or not cultural features are present.

- **Shovel Tests:** If additional shovel tests are necessary at this stage to guide the placement of test units, they are to be at least 30 × 30 cm and screened through quarter-inch (or smaller) mesh. Shovel test placement will depend on the research design.

- **Test Units:** Site characteristics and conditions will govern test unit size. Unit placement will depend on the results of shovel testing and, if applicable, the results of surface collection. Test units should be excavated by natural or cultural strata but can include 10 cm arbitrary levels within strata. Although the plow zone or construction debris may be excavated as a single vertical level, regardless of thickness, it is usually advisable to excavate the interface between plow zone and unplowed soils as a separate level.
• **Features:** Features identified during excavation are to be mapped, drawn to scale, and photographed. A representative sample of features should be bisected to reveal profiles and recover cultural materials.

• **Screening:** Soil will be screened through hardware cloth mesh no larger than a quarter-inch. Flotation or soil samples, often processed in the laboratory, will require finer screens, typically at least one-eighth inch. Because recovery rates for all classes of materials, particularly faunal and botanical, increase as screen size decreases, investigators are encouraged to estimate relative recovery rates by systematically using finer mesh to sample soils. The choice of dry screening, water screening, and mechanical screening depends on the research design and the specific factors at each site.

• **Disposition of Artifacts:** Artifacts are to be bagged by discrete provenience (i.e., unit and level). Typically, all artifacts are collected. However, any material not collected, such as brick, mortar, shell, or fire cracked rock, may be counted, measured (when appropriate), weighed, sampled by provenience, and discarded in the field.

III.D.3 Specialized Methods

• **Specialized Studies:** If flotation, soil, radiocarbon, or other samples are to be obtained, consultation with a specialist on the proper methodology should be conducted prior to retrieval.

• **Metal Detecting:** In addition to military site identification, metal detectors are useful in the delineation/evaluation of historic house sites, any site(s) with a Contact Period or Historic Indian component, whiskey stills, and tar/charcoal kilns. Coverage, mapping, and collection strategies should be illustrated and discussed in the research design. Phase II coverage should be along 1.5-meter lanes on transects at maximum a 10-meter interval. Removal of ground vegetation and/or leaf litter along detection lanes may be needed for metal detecting to be effective.

• **Geoarchaeological Studies:** Consultation with a geomorphologist is recommended during evaluative testing to interpret site formation processes and help identify areas likely to contain intact archaeological deposits.

III.D.4 Record Keeping

• **Site Map and Permanent Datum:** The site map should depict site boundaries, datum, surface features, excavation units, and topography. An easy-to-relocate, permanent datum should be established and clearly identified with the state site number. The Universal Transverse Mercator (UTM) of the datum should be established using a GPS unit with sub-meter accuracy.

• **Documentation:** All above- and below-ground features and subsurface tests are to be mapped, drawn to scale, and photographed. Appropriate notes and forms will be maintained for all field investigations, a Munsell chart will be used to record soil colors, and USDA soil texture
classifications will be used to characterize soil texture. Artifact depth and location, and excavation size should be included in field notes

- **Photographs:** Digital photographs should be used for visual documentation. A minimum 300 dpi quality (when printed at 5 x 7-inch size) and .TIFF file format is in keeping with most curation repositories.
IV. ARTIFACT PROCESSING, DATA ANALYSIS, AND CURATION

While minimum standards for artifact processing, analyses, and curation are outlined below, investigators should tailor their activities to the unique aspects of each project. Overall, it is advisable to consult with Georgia State Historic Preservation Office (GASHPO)/Georgia Historic Preservation Division (GHPD) staff, the curatorial facility, and specialists early in the planning process. Laboratory staff should be aware of curation policies of the various repositories. Additionally, all artifacts should be handled to the standards of Society for Historical Archaeology (SHA)/Society for American Archaeology (SAA)/Archaeological Institute of America (AIA) and 36 CFR Part 79.

Processing, analyzing, and curating artifacts must occur in secure and safe environments to prevent loss of significant data. The Principal Investigator (PI) and Project Archaeologist are ultimately responsible for ensuring that artifact data and integrity are preserved. The laboratory staff responsible for basic artifact processing and analysis must have sufficient knowledge to do the job, have access to appropriate comparative collections, and have access to experts when needed. Additionally, laboratory staff and/or the Project Archaeologist should have training in basic curatorial procedures.

IV.A Field Tracking

The choice of a system for tracking artifacts in the field is at the discretion of the investigator. However, the tracking system should be consistently applied throughout the project. During fieldwork, the recorder will enter a preliminary description of the artifacts in field notes and forms before placing them in labeled containers that fully protect them from damage. Artifacts can then be brought back to the laboratory for cleaning and analysis.

IV.B Processing

Before cleaning each artifact, the recorder will check its condition (e.g., for friability) and analyze its surface for easily lost information (e.g., pseudomorphs, organic materials, pigments, etc.). Material with residues, chemicals, or elements which could be examined with innovative technology or potentially useful for future studies should be left uncleaned and protected. All other artifacts should then be cleaned in a gentle manner which preserves the information they contain. Before photographing, selected diagnostic artifacts are usually labeled to record site number, provenience, and catalog number. Care should be taken to ensure that important features like edge wear are not obscured during labeling.

IV.C Analysis

If detailed analysis of certain archaeological materials is planned, it is advisable to include appropriate specialists as early in the project as possible. Because most archaeological sites are valuable primarily because of their research potential, artifact analysis generally should follow well-established classification schemes and typologies. The choice of a specific system will depend
on the investigator’s goals and should be fully defined and referenced in the project report. Regardless of which classification system is used, certain basic descriptions and analyses must be included in the report:

- Artifact identification number or provenience
- Material (e.g., lithic, ceramic, glass)
- Class (e.g., projectile point, sherd, bead)
- Count and/or weight, as appropriate
- Dimensions, if appropriate
- Type (e.g., Clovis, Creamware, etc.)
- Noteworthy attributes (e.g., form, decoration, method of use, internal or external dating)
- Analyst observations

IV.D Curation

Federally required projects stipulate that facilities used for permanent curation should meet standards outlined in 36 CFR Part 79. Curation facilities in Georgia which meet these standards and offer fee-based curatorial services include University of Georgia’s Laboratory of Archaeology in Athens, University of West Georgia’s Antonio J. Waring, Jr. Archaeological Laboratory in Carrollton, and the Georgia Southern University Laboratory of Archaeology in Statesboro. The selection of a facility is best made early in the project and, minimally, before the laboratory analysis has begun. The designated curation facility should be identified in the project report. All artifacts and pertinent field notes and maps, laboratory analysis notes, and report documentation should be archivally prepared according to the curation facility’s guidelines and remitted to the curation facility. For projects where no artifacts were recovered, notes and other project materials should be prepared for curation. This should include photographic material and electronic media including artifact and project databases, along with their metadata. Electronic media should be submitted on archival, 100-year disks and archival hard copies should be printed and prepared for long-term storage.

IV.E Conservation

Archaeological collections are unique and destructible cultural resources which may be studied by future generations. Bone, wood, shell, leather, textiles, and other organic artifacts often require specialized preservation treatment(s). Conservation should be undertaken in consultation with the permanent curation repository. Items in particularly fragile condition should be handled by an experienced conservator. When mending ceramic or glass vessels, all work should be reversible in both the short term and long term. Electrolysis should be considered for selected iron/ferrous artifacts that could continue to oxidize in long term storage. Conservation treatment records should be maintained as part of the documentation report.

IV.F No Collection and In-Field Analysis

It is recognized that no-collection and in-field analysis practices are increasing in some areas, particularly in western states. Key drivers of this trend include limited availability of collections storage space, increasing costs of curation, cultural patrimony issues, and pressure by government
agencies and other groups to reduce overall project costs. Few publications have focused on these topics since Butler’s article on no-collection surveys (Butler 1979).

The Archaeological Collections Consortium (ACC) is a group of representatives from the SAA, the SHA, and the American Cultural Resources Association (ACRA) who are focused on the use, preservation, and management of archaeological collections. The ACC has recently published online best practices for no-collection strategies and in-field artifact analysis (ACC 2019). https://acra-crm.org/collections The effectiveness and reproducibility of these practices and their impacts on the archaeological record and future research should be carefully considered by archaeologists involved in Georgia investigations.

Except for reconnaissance surveys, no-collection strategies and in-field artifact analysis are not considered sufficient for archaeological investigations in Georgia. Exceptions, especially for no-collection, might be if a site contains hazardous materials; burials, grave goods, or funerary objects; particularly large and/or heavy artifacts; large quantities of architectural materials (brick, mortar, shell, tabby, concrete); nail concentrations; and non-battle related artifacts identified during metal detector surveys at military sites. For metal detecting, include information such as the use of discrimination for particular metals and specifics on any sampling strategy, such as percentage of recovery rate for all metal detector hits. All artifact collection strategies should be clearly described in the research design and subsequent archaeological report, particularly if no-collection and/or in-field analyses are employed.
V. REPORTING RESULTS

A summary of the minimum standards for archaeological survey reports appears below. For in-depth treatment of reporting standards, see Secretary of the Interior’s “Standards and Guidelines,” Federal Register, 48:44734–44737; McGimsey and Davis 1977; and Bense et al. 1986. For matters of style refer to the “Style Guide” for American Antiquity (1988). Timeliness of reporting is important for the preservation and dissemination of archaeological data and knowledge. Accordingly, reports for all archaeological studies conducted in Georgia should be completed within 10 years of completion of field studies.

A Georgia Archaeological Site Form should be completed for all sites found within the project area. Only official site numbers can be reported in drafts and final reports. If a site has been previously recorded, a revisit form will be completed noting the current site conditions and any new information. All site forms must be submitted to the Georgia Archaeological Site Files (GASF) before completion of the final report.

V.A Report Content

Although the exact format and content of the report is usually a decision reached by the agency, client/applicant, and consultant, reports should minimally contain the following information:

- Title Page
 - Report title (including type of investigation and project location)
 - Author(s)
 - Principal Investigator(s)’s name, affiliation, address, telephone number, and signature
 - Name and address of client for whom report was prepared
 - Name of lead state and/or federal agency, as well as contract number, permit or State Clearinghouse number
 - Report date
 - Report status (e.g., Draft, Revised Draft, or Final)
- Management Summary
 - Brief description of project and its purpose
 - Concise summary of findings, evaluations, and management recommendations
 - A clear presentation of the number of sites located, the component(s) associated with the sites, and recommendations on their eligibility for the National Register of Historic Places (NRHP). A summary table can be used to provide this information.
- Table of Contents
- List of Figures and/or Tables
- Introduction
 - Purpose of report and nature of the undertaking
 - Legislation or regulations governing the work
 - Name(s) of project sponsors, contract/permit numbers, and other appropriate agency-specific information
 - Description of undertaking, including area of potential effect (APE), project footprint, and nature and extent of anticipated disturbance. Identify and describe undertaking’s
features or facilities. Give size of undertaking in acres/hectares or linear distance and width (e.g., road corridor). If the size of an area surveyed is different from the total undertaking, state the survey area in acres/hectares. The entire undertaking area should always be described and depicted on relevant project maps, especially for Section 106 projects. Reasoning should be stated for discrepancies between the total undertaking and actual surveyed area(s).

- U.S. Geological Survey (USGS) 7.5-minute quadrangle that clearly delineates undertaking and project area boundaries, as well as type of work done in each area (i.e., pedestrian survey, shovel testing, etc.). Figures should include quad name, bar scale, legend, and north arrow.
- Dates when work was conducted and a list of personnel

Environmental Setting
- Include physiographic province, landform type, nearby drainages and water sources, roads, dominant soil association, and current land use. If limiting factors affected the survey, describe and discuss them. Include representative photographs of the general project area. The paleoenvironmental also should be discussed.

Cultural Context and Previous Archaeological Investigations
- This section includes an overview of the cultural history of the project area. Length and detail of discussion should be appropriate to the level of investigation and materials recovered. This section should also include a review of previous archaeological investigations in the project area and its vicinity (e.g., drainage or county as appropriate), as well as a description of all archaeological sites within a reasonable distance from the project area. Author(s) also should describe their historical research, including a list or description of all resources reviewed, repositories and specific collections consulted, and a list of persons interviewed.

Research Design
- Research designs present explicit statements of theoretical and methodological approaches followed in a particular cultural resource study, and, therefore, are to be included in most reports. The nature and level of detail will be consistent with the undertaking and type of investigation.
- If a research design has previously been developed for a specific geographic region, type of investigation, or type of resource, the author(s) should reference and discuss it.

Field Methods
- Field methods should be described in a way that lets reviewers and future researchers easily reconstruct what was done and why.
- Maps should depict pedestrian survey areas, subsurface tests and/or excavations, and any relevant field descriptions (e.g., vegetative cover, disturbed areas, etc.). Explanation should be given when shovel tests are not excavated, and “no-dig” locations shown on project maps. For projects where different survey coverage was applied, maps should indicate where each was employed. All maps should include a north arrow (magnetic north, true north, or grid north), a map scale (e.g., 1:24,000), and a bar scale. For sites located using Global Positioning Systems (GPS), the type of equipment and its error range should be indicated.
- Surface survey techniques should be described and justified for both the general project area and for each individual site (if different from the general methodology).
Note locations examined, intervals between transects, surface visibility, and methods of collection.

- Subsurface survey techniques should be described, including shovel test and test unit dimensions, depths, transect intervals, and method of artifact recovery. The total number of excavated shovel tests should be included in the report.
- Specialized techniques (such as remote sensing) will be described and evaluated when used, including personnel, equipment, collection strategies, and coverage. They must also be depicted on appropriate maps. Post-processing methods and software should be described.
- Discuss constraints on fieldwork, if not already described, such as limited access, poor ground visibility, and adverse weather conditions. Note which areas of the project area were not examined or received limited examination.
- When field methods deviate from the recommended standards, explicitly discuss how and why such was the case. Likewise, if archaeological site definition criteria deviate from recommended standards, these should be explicitly stated and discussed.

- Disposition of field notes, artifacts, and other records.

Artifact Description and Analysis

- Describe classification scheme. If a previously defined typology is being used, provide a brief description along with a reference.
- Describe assemblage. Provide a complete description of recovered artifacts by provenience in the text. If the site is large, a summary table should be provided, with specific information on each shovel test possibly placed in an appendix. Detailed artifact descriptions, measurements, and attributes can be provided in tabular form as an appendix, but also should include provenience information. Typically, artifact descriptions should include material, class, and type of artifacts recovered, along with counts, weights, and any measured attributes of diagnostic material (e.g., projectile points, ceramics, beads, etc.).
- Provide illustrations and/or photographs of representative or important artifacts.
- Present results of special studies. Describe any special analytical methods used. For radiocarbon dates the following information should be included:
 - Site number and provenience
 - Laboratory number
 - Material dated
 - Method of dating (e.g., extended counting, Accelerator Mass Spectrometry (AMS), etc.)
 - Conventional C-14 age expressed in radiocarbon years before present plus or minus one sigma error (e.g. 2420 ± 60 BP).
 - Calibrated C-14 age expressed in calendar years (range) within one sigma of error. NOTE: Please include all intercepts (e.g., cal b.c.755–685 and cal b.c. 540–400).
 - Calibrated C-14 age expressed in calendar years (range) within two sigmas of error (e.g., cal b.c. 780–380).
 - Citation for calibrated results (e.g., Stuiver et al. 1993)
 - Associated artifacts, particularly diagnostic artifacts
 - Comments

Results and Site Descriptions

- Describe all isolated finds and include locations on a project map.
• Site Description
 ▪ Describe each site in narrative form including dimensions, stratigraphy, present conditions, quantity of artifacts, and features. Include discussion of shovel tests, soil cores, and test units, as appropriate. For test units, include drawings and photographs of representative wall profiles. A written description of soil stratigraphy (including color Munsell Soil Color Chart) should be provided for a representative sample of shovel tests and for each test unit.
 ▪ Sketch maps for each site must be included in the report. The sketch maps should depict general topographic characteristics, placement of subsurface tests, and features. These maps must include a north arrow, date, bar scale, legend, and site number.
 ▪ Photographs if, for example, the site contains structural remains, significant disturbance, etc.
 ▪ Enumerate, describe, and interpret artifacts. Describe and interpret features, including those above ground. Include drawings and photographs of representative features.
 ▪ For historic archaeological sites, summarize results of the archival research. For larger projects, most of the archival research can be included as a separate background section, and only site-specific information needs to be presented in this section. All archival and oral history should be referenced in a systematic manner that lends itself to source relocation.

• Site Significance
 ▪ A statement of significance must be presented for each identified site, with reference to specific NRHP criteria listed at 36 CFR 60.4. Most archaeological sites are recommended as eligible under Criterion D; however, investigators should also consider eligibility under Criteria A, B, and C. Sites should be evaluated for their potential to contribute information about specific research objectives. This process should be documented in sufficient detail for the reader to judge how the investigator reached these conclusions.
 ▪ If a site is recommended as not eligible, state the rationale.
 ▪ If a site is recommended as eligible or potentially eligible, present supporting evidence, including research topics that might be addressed. Discuss types of data known to be or thought to be present and indicate information that can be inferred from these data.
 ▪ If there is not enough information to evaluate a site’s eligibility, state this explicitly.

• Site Integrity - Identify and explain any factors that have or may have affected site integrity.
• Project Impacts - If known, identify and describe potential project impacts for each site.

• Summary and Recommendations
 ▪ Summarize and list sites recommended as eligible or potentially eligible for the NRHP. Outline the nature and extent of any recommended additional work. If site eligibility is indeterminate and the archaeological work was conducted at a survey level, appropriate recommendations for further work might include site testing to determine NRHP eligibility. For evaluative testing, recommendations might include
site avoidance, or mitigation of adverse effects through data recovery, public exhibits or interpretive panels, or other creative mitigation. Summarize and list sites that are recommended as not eligible for the NRHP. A recommendation of no further work at such sites is appropriate.

- State whether additional work may be necessary in portions of the project area not adequately surveyed during your fieldwork.
- Evaluate your survey and/or testing in reference to the research design. Discuss how constraints on the investigation may have influenced the reliability and value of the information.
- List the location of the curation facility.

- References Cited
- Appendices and Attachments
 - Vitae of key staff should be included in the draft report that is to undergo review. Vitae may be removed from the final report.
 - Site forms for archaeological sites should be included in the draft report that is to undergo review. The forms can be removed from the final report.
 - Artifact Catalog, if not presented elsewhere in the report.
 - Specialist Analyses, including radiocarbon and oxidizable carbon ratio (OCR), if not presented elsewhere in the report.

V.B No Finds Reporting

This abbreviated report format is approved for use on Phase I archaeological surveys that result in Negative Findings. A full Phase I archaeological report must be submitted for all projects that identify new and previously identified archaeological sites or other historic properties within the project survey APE. Any questions regarding the applicability of the Archaeological Short Report to a specific project should be directed to Georgia State Historic Preservation Office (GASHPO) staff archaeologists.
VI. BIBLIOGRAPHY

The Archaeological Collections Consortium (ACC)

Advisory Council on Historic Preservation
 1990 Consulting About Archaeology Under Section 106.

Butler, William

Civil War Sites Advisory Commission (CWSAC)

Davis, Robert S., Jr., compiler
 1991 Research in Georgia. Southern Historical Press, Greenville, South Carolina.

Elliott, Daniel T.

Geier, Clarence R. and Steph R. Potter, editors

Lowe, David W.

McGimsey, Charles, and Hester Davis

Schweitzer, George K.